Agile at Scale
Essentials

The Agile at Scale Essentials
practices provide a basic starter kit
toolbox that covers all the common
and critical aspects of scaled agile
development

Adaptlve Prod ?
Fundin Management Backlo Architecture
Essentials Essentials Essentials Essentials

Release Development DevO
Management Support Essemlals Govemance
Essentials Essentials Essentials

@ ©®

Team Of Periodic
Alignment
Essentials Essentials

) (¥ VAR JACOBSON

INTERNATIONAL
Generated byt Practce Workbenen™ 2018.09

e)

) _ ' IVAR JACOBSON
\ ‘ DS N 2018.09

Adaptive Funding
Essentials

Acquire and allocate funding to
support continuous value flow and
maximize return on investment.

=1 (@ a
Portfolio Investment Portfolio
Management Cycle

=1 (2 (D
Fund and Feed Provide Allocate
Value Streams Forecasts Resources

(2 =1
Adapt Portfolio Small is Resources

Beautiful

J

|_I Portfolio
Management

Single point of responsibility for the ® ® @
allocation of portfolio investments

and resources to maximize overall
return-on-investment and balance short and
longer term considerations.

This is typically a group of senior executives
that together own and drive the overall
product strategy.

They collaborate with Product and Release
Management to dynamically adapt
investment and resource allocations over
time.

Responsible For:
[Allocate Resources and
[Adapt Portfolio

4) e)

) .V IVAR JACOBSON _ ¥ VAR JACOBSON
\ %. ety Praccs rroenc 2018.09 Ge ey Pracice erkbenc™® 2018.09)

C)(Investment Cycle

A time period in which the -~
resources for a portfolio '\S’,’
are forecasted, allocated

and managed.

The shorter the cycle, the more
responsive and adaptive the
allocation of funds and

resources.

(Forecasted)
(Resourced]
(Balanced]

Relates to: (X Work

(| Portfotio

A collection of portfolio
investments, each with D
strategic objectives,

resource allocations and funding
requirements.

\ Items Listed /
\ Allocations Justified /
\ Trend Data Analyzed /

Describes: (X Work

IVAR JACOBSON
Aes - Al
\ ‘ DS 2018.09

a)

a)
|_I Fund and Feed
Value Streams

“Stop-Go” funding of short-lived projects,
forming and disbanding delivery
capability each time, delays value and
reduces productivity.

To avoid this, establish and fund value
streams as long-lived delivery channels,
and feed funded initiatives into these in
priority order. Adjust funding regularly
(e.g. quarterly) based on performance
and strategy.

Devolve resourcing decisions to delivery
streams, where local expertise can
allocate resources to maximize value
throughput.

Guides: [Allocate Resources

J

Provide
Forecasts

Provide regular, rolling forecasts
on the resources needed to meet
demand for new and improved
products and services, and to
deliver the organization’s
strategic vision.

iPrepare to do the Work';

Y o K% %k

Stakeholder i
Representation Leadership Management

(CXWork: Prepared (contributes to)

tg Portfolio: Items Listed
Investment Cycle: Forecasted

a)

) ' IVAR JACOBSON
\ gem.ea by Pracice Worksencn™ 201 8.09/

Allocate
Resources

Allocate resources across the
portfolio of work in order to steer
the development work in line
with strategic goals.

(XWork

(XInvestment Cycle: Forecasted

Stakeholder
Representation Management

("X Work: Under Control (contributes to)
k Portfolio: Allocations Justified
Investment Cycle: Resourced

) +Y VAR JACOBSON
\ a1 2018.09

Tl .Y IVAR JACOBSON
. 201809 |

s ™
> Adapt Portfolio

Continuously adapt the portfolio
according to data and feedback
from the market, and the overall
performance of the portfolio.
(XWork

(X Investment Cycle: Resourced

Stakeholder i
Representation Leadership Management

(X Work: Under Control (contributes to)

tﬂ Portfolio: Trend Data Analyzed

Investment Cycle: Balanced

s D
|—| Small is Beautiful

Avoid large and long initiatives that
defer value. Break big investments
into smaller ones that deliver value
early and often. Aim for a continuous
flow of value return over time, as this
delivers a better return-on-investment
profile, and enables risk and exposure
to be minimized.

If prioritization uses using a Weighted
Shortest Job First (WSJF) formula,
then smaller items will be prioritized
over larger items, thus motivating the
breaking up of large investment items.

Guides: [Adapt Portfolio
Ref: Small is Beautiful

AR _ +Y IVAR JACOBSON
\ ‘ DS 2018.09

J

« N
"o i
: =71 Resources

« Essence Standard (OMG), refer to

* Small is Beautiful: Donald Reinertsen
describes the economics and science of this in
detail in "Reducing Batch Size" - ch. 5 of his
book The Principles of Product Development
Flow (Celeritas Publishing 2009).

* The Essence of Software Engineering: Applying
the SEMAT Kernel, by Ivar Jacobson, Pan-Wei
Ng, Paul E. McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

* This practice draws on various recognized
industry practices, including Beyond
Budgeting (see for example
http://bbrt.org/about/what-is-beyond-budgeting/),
Lean Accounting (see for example

based-planning.).

el +Y VAR JACOBSON
QalEERTO, 21800

(1 VAR JACOBSON
Generated byl Practce Workbench™ 2018.09

>
Product Management
Essentials
Manage the progress of product ideas

to maximize value, given limited
development capacity.

=] @ ﬂ
Product Product Idea Business Case
Management
=] (I [
Economic Model Filter Ideas Evaluate Ideas
=] =1 [

Idea Ownership Ideas Kanban Measure Value

Resources

A LV IVAR JACOBSON
\ }enemea o0 Practce rkoencn™ 2018.09

|_I Product
Management

A single point of responsibility for ® ® e
direction and prioritization above

and across many related teams,
products, Product Owners or
Stakeholder Networks, and for
overseeing related work and progress.
Depending on size and complexity, these
responsibilities may rest with a single
empowered individual and a supporting
team, or with a product management
group. The key for agility is that, in either
case, they are highly available, engaged
and responsive.

Evaluate and Prioritize: (X Product Idea
Ref: Product Management

IVAR JACOBSON
@@ O
\ ‘ DS 2018.09

S

/])
Business Case

Articulates the anticipated 3
value, feasibility, costs and

the return-on-investment
(ROI) case associated with a
Product Idea.

\ Value Described

/
\ Viable Solution Outlined /
\ ROI Case Established [

\

Describes: (X Product Idea
ef: Business Case

R
). +J IVAR JACOBSON
\ D 2018.09

e .Y IVAR JACOBSON
e 201809 |

4 N

C)(Product Idea

A proposal as to how S LI

some new value could be 9

realized. -

(Value Agreed]

(Viability Assessed]

(Prioritized for Delivery]

(In Development]

(Realized]

(Value Measured)

Relates to: (X Opportunity

e (ru) Q¥ AR JacoBSON 201806
- y J
4 N

‘—| Economic Model

A framework to objectively $€L
assess the relative or _ /7'
absolute value of proposed
investments in the product.
Typically includes assessments of
value-return as well as time-
criticality and risk-reduction.
Common approaches include
Weighted Shortest Job First
(WSJF), also known as Cost of
Delay Divided by Duration (CD3).

Supports: [Evaluate Ideas
Ref: Economic Model

> Filter Ideas > Evaluate Ideas
Ensure Product Ideas have Analyze Product Ideas to determine
sufficient relevance and possible what should be done in response,
value before investing in the and what priority attaches to each
further analysis needed to possible response approach based

on return-on-investment analysis.
("X Opportunity: Identified

LC)(Product Idea: Value Agreed
iUnderstand Stakeholder Needs

* OK K

Stakeholder i
Representation Analysis Development

prioritize them for development.

Stakeholder i
Representation Anlysis

(C)X Opportunity: Identified
LC)(Product Idea: Value Agreed (X Opportunity: Value Established
LG Business Case: Value Described LC)(Product Idea: Prioritized for Delivery
LG Business Case: ROI Case Established

el +J IVAR JACOBSON _ 'Y IVAR JACOBSON
\ : A 2018.09 > o 2018.09

S

e N g)

|—| Idea Ownership ‘—| Ideas Kanban

A single point of ownership ©.® e Use a Kanban system to make

for a Product Idea. "' Product Ideas visible, and to

Idea Owners are responsible track progress in responding to

for the Business Case for an idea. ideas and prioritizing future value

They own the realization of the idea delivery. .

in the form of the backlog items and Apply Work-In-Process (WIP) limits to

acceptance criteria that will realize ensure a smooth flow of work through

the evaluation and prioritization

it, and marshal the achievement of _ _ b
process and into the delivery pipeline.

the business case by ensuring that _ _
the returns being achieved for the The key is to focus on progressing
investments made is tracked and high-value ideas, rather than working
optimized over time. on all Ideas at once.

Tracks Progress Of: (X Product Idea
Owns: (X Product Idea Ref: Ideas Kanban

) 1V IVAR JACOBSON _ LV IVAR JACOBSON
\ L 2018.09 b 2018.09

> Measure Value

Measure the value of the Product

Idea when it is in use by users,
to validate against the business
case and guide the development
of future Product Ideas.

()X Opportunity: Addressed

L(:)(Product Idea: Realized

Stakeholder i
Representation Anlysis

(C X Opportunity: Benefit Accrued (contributes

to)
bProduct Idea: Value Measured

IVAR JACOBSON
@@ O
k (pu) DS 201 8.09/

¢ Product Management: See p.42 of Dean
Lefingwell's Agile Software Requirements

(Addison-Wesley 2011) for a discussion of this role

in large-scale agile versus, for example, a Scrum
Product Owner.

* The Essence of Software Engineering: Applying
the SEMAT Kernel, by Ivar Jacobson, Pan-Wei
Ng, Paul E. McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

(¥ veaacosson —
Generated by I Practice Workbench™ .

* Business Case: An approach to quantifying ROI
for incremental delivery is described in Software by
Numbers by Mark Denne and Jane Cleland-Huang
(Prentice Hall 2004).

+ Economic Model: Using an economic model to
ensure that priority and sequencing decisions are
made consistently at all levels to maximize ROI
across an organization is emphasised by Don
Reinertsen in The Principles of Product
Development Flow (Celeritas Publishing 2009).

« Essence Standard (OMG), refer to

+ Ideas Kanban: The use of a Kanban system for
progressing high-level expressions of customer
need is decribed by Dean Leffingwell in Agile
Software Requirements (Addison-Wesley 2011).

fesi(ow) (T MaRpcomsoN
Y Generateay U ractce Workoencn™ 2018.09)

Prioritize and marshal the delivery of
product value requiring the collaboration of
many teams.

Refine Shared Shared Backl Prepare a Shared
Backlog AeCiRacsen Backlog Iltem

Sharelcti Backlog Test Case Shared Definition
em

of Done
Get a Shared Continuous Priority Al t
Backlog Item Cross-Product raniyEtignmen
Done Integration
Calibrated Test-First Dependency
Estimating Integration Management

Resources

el .Y IVAR JACOBSON
k i1 2018.09

Refine Shared
Backlog

Get and keep the Shared Backlog
visible, up-to-date and in good
working order, with high priority
items agreed and well understood.
(_)XRequirements: Conceived

LG Shared Backlog: (any level)

{Understand the Requirements ;

*OO% % %

Stakeholder i i
Representation Analysis Development Testing

(X Requirements: Bounded or beyond

tg Shared Backlog: Items Prioritized

Shared Backlog Item: Identified (New
Shared Product Backlog Items)

IVAR JACOBSON
@@ 0
\ () DS 2018.09

/

4 N
D Prepare a Shared
Backlog Item

Get a Shared Backlog Item ready
for development by defining its
constituent backlog items and
how they will be integrated and
tested.

(")Shared Backlog Item: Identified
:'Understand the Requirements}

* O OK K %K

Stakeholder i i
Representation Analysis Development Testing

G Test Case: Test Ideas Captured (1 or more)

("X Shared Backlog ltem: Subordinate Items
Defined

r ™
CI Shared Backlog

An ordered list of valuable lEI
outcomes that requires the | (T 1)
coordinated effort of many
development teams.

\ ltems Gathered /
\ Items Prioritized /
v Cost-Benefit Quantified i

Describes: (X Requirements
ef: Shared Backlog

s _ (¥ VAR JACOBSON
\ ‘ Generad by rcicsMoresencas 2018.09

R
IVAR JACOBSON
has - Al
() DS N 2018.09/

\

/
(j(Shared Backlog
Item

An independently
releasable and valuable
outcome that requires
development contributions from
many teams.

oD

(Identified]

(Subordinate Items Defined]

—

(Ready for Release

Relates to: (X Requirements
ef: Shared Backlog

R
el .Y IVAR JACOBSON
. 2018.09

-
Cl Test Case

Defines test inputs and
expected results to help
evaluate whether a

specific aspect of the system
works correctly.

\ Test Ideas Captured /
\ Scripted /
U Automated i
e e e

Describes: (X Requirements and
(X Shared Backlog ltem

IVAR JACOBSON
Aes - Al
\ () DS 2018.09

/

Get a Shared
Backlog Item Done

Constituent backlog items are built,
tested, integrated and it is verified
that the Shared Backlog Item is
correctly implemented.

()X Requirements: Bounded or beyond

LC)(Shared Backlog Item: Subordinate Items
Defined

........................... B e ——

iimplement the System - Test the System;

* K K %K

Stakeholder i i
Representation Analysis Development Testing

(| Test Case: Scripted
(") Shared Backlog Item: Ready for Release
(X Software System: Usable or beyond

s _ (¥ VAR JACOBSON
\ ‘ Gonrsedty Ll Prackos Woroencae 2018.09

~

J

|_I Shared Definition
of Done

Have a clear definition of what it means
for any Shared Backlog Item to be fully
completed and ready for release.

This should include the completion of
each and every constituent backlog item
according to the Definition of Done for
these items, but it will also include
completion of additional integration and
quality assurance activities such as “end-
to-end” testing and “nearest neighbor”
testing.

Guides:
[Get a Shared Backlog Item Done
Informs: [> Prepare a Shared Backlog Item
Relates To: (X Shared Backlog Item

i) + Y IVAR JACOBSON
gem.ea oyt racce Worksencn™ 2018.09

\

J

|_I Continuous Cross-
Product Integration

Code from different component
products is continuously integrated,
so that there is always a tested,
working integrated build of the
composite product that is being
evolved to implement the Shared
Backlog Items.

Demonstrate the integrated product
as often as possible, e.g. at least
once every development timebox
and/or completion of each Shared
Backlog Item.

Part Of:
[Get a Shared Backlog Item Done

el .Y IVAR JACOBSON
. 2018.09

\

|_| Priority
Alignment

To achieve the value associated with
a Shared Backlog Item, all the
constituent Product Backlog Items
must be completed. The priority of
doing this may need to be balanced
with other items on the Product
Backlogs of the different teams.

This is an ongoing process of
negotiation, e.g. between product
owners or within a product
management group. This is best
managed within the context of an
agreed economic prioritization model.

Part Of:
[Get a Shared Backlog Item Done

) +Y IVAR JACOBSON
DS 2018.09

/

|_| Test-First
Integration

The constituent Product Backlog
Items that need to be developed,
tested and integrated in order to fully
implement a Shared Backlog Iltem
are specified by defining the tests
that each one needs to pass for it to
be considered “done”.

When these Product Backlog Item
tests are passing it means the item
is ready for integration and testing
with the other constituent items.

Supports:
[Get a Shared Backlog Item Done

A@s_ (¥ VAR JACOBSON
\ ‘ Generated by racics Workbench™ 2018.09

J

C Calibrated
Estimating

Where multiple teams collaborate to
deliver a Shared Backlog Item, to
estimate size and velocity we need to
be able to compare like-with-like
across different team estimates. This
means we need a shared, calibrated
measurement unit.

One way this can be achieved is by
having a shared “Gold Standard”
backlog item, with an agreed size,
that all teams use to calibrate all their
relative estimates.

One Way To Size: (_ X Shared Backlog Item
Ref: Calibrated Estimating

i) + Y IVAR JACOBSON
DS N 2018.09

J

|_I Dependency
Management

When many teams are working to
evolve a complex product,
dependencies between teams need to
be managed. For example, to
complete a Product Backlog Item, a
team may need another team’s
component product to be extended.
This can either be managed via the
other team’s Product Backlog, or
using a more open model where
teams can change other teams’
products with guidance and review
support from the “owning” team.
Part Of:
[Get a Shared Backlog Item Done

A@s_ ¥ VAR JACOBSON
‘ Generated by Pracics Workbonch™ 2018.09

« Calibrated Estimating: Dean Leffingwell talks
about the challenge of normalizing velocity in ch. 8
of his book Agile Software Requirements (Pearson
Education Inc. 2011). Leffingwell suggests a
“Hybrid Model” estimating approach for managing
this challenge, as opposed to the Gold Standard
model suggested in this practice.

* Essence Standard (OMG), refer to

IVAR JACOBSON 1 IVAR JACOBSON
o) 1} 6
\ DA 4 201009 | \ o RN 2018.00

Guide the evolution of a solution
approach that adapts to changing
needs and challenges.

& D @
Architecture Evolve Architecture
Ownership Architecture Enhancement
Roadmap
5] (] o
Just-In-Time Architecture Evolve
Architecture Roadmap Architecture
5] (D (D
Skinny System Drive an Prepare
Architecture Architecture
Spike
=t
Resources

« Shared Backlog: The concept of a Product
Backlog that is shared across multiple teams is a
standard part of many scaled agile models and
frameworks. Dean Leffingwell calls this a “Program
Backlog” in his book Agile Software Requirements
(Pearson Education Inc. 2011). Large-Scale
Scrum simply calls it “the Product Backlog”, as its
role remains unchanged irrespective of how many
teams are collaborating to deliver the product.
(See for example Practices for Scaling Lead and
Agile Development by Craig Larman and Bas
Vodde (Addison-Wesley 2010)).

* The Essence of Software Engineering: Applying
the SEMAT Kernel, by Ivar Jacobson, Pan-Wei
Ng, Paul E. McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

e)

& ' [torcomson @ V IVAR JACOBSON
\ R Uiy 20009 | L A 17, 201809 |

|_I Architecture

Ownership
Who takes responsibility for the 00
success of the technical solution? l

There are two possible answers:

1. Everyone collectively or

2. A specific, dedicated individual architect
or architecture team.

For big, complex or high-risk technical

endeavors, dedicated Architecture Owners

may well be needed to guide the evolution

of the right technical solution, but they

should work collaboratively with teams to

reinforce collective responsibility and

learning.

Owns: [| Architecture Roadmap
Ref: | - | Architecture Ownership

Evolve Architecture
Roadmap

Map out how the Software
System will need to evolve over
time, and continuously refine this
thinking based on best current
information.

("X Requirements

Stakeholder
Representation Analysis Development Testing

(X Software System: Architecture Selected

tg Architecture Roadmap: Outlined

Architecture Enhancement: Goals
Articulated

IVAR JACOBSON
aes - Al
\ () DS 2018.09

~

/

|_| Just-In-Time
Architecture

Agile architecture specifically
does not mean never thinking @
ahead beyond the current
needs and targeted release.
It does mean keeping the current
structure and approach as simple
and cost effective as possible to
achieve the next release goals, and
then upgrade as needed to support
future releases. This improves
overall ROl and increases learning
based on experience.

Guides: [> Evolve Architecture Roadmap
Shapes: [~ | Architecture Roadmap

) _ (¥ IVARJACOBSON
\ ‘ Generated byl racics Wortbencn™ 2018.09

P

IVAR JACOBSON
@@ O
() DS N 2018.09

\
Architecture
Enhancement
An independently buildable
and testable extensionto |+
the architecture to support
foreseeable needs /
requirements.
(Goals Articulated]
(Approach Verified]
(Ready for Use]

Relates to: (X Software System

i .Y VAR JACOBSON
} oy Prachcs Woribancn™ 2018.09
%, J

7| Architecture
Roadmap

Communicates the

planned enhancement of
the architecture over time

to support key releases and
other milestones in the evolution

of a Software System.

\ Outlined |

Describes: (X Software System

Evolve
Architecture

The team and the stakeholders
continuously think about, debate,
question and evolve the
architecture approach, based on
learning.

("X Software System: Architecture Selected

* % K %K

Stakeholder i i
Representation Analysis Development Testing

(") Software System: Demonstrable
(contributes to)

IVAR JACOBSON
@@ 0
\ () DS 2018.09

7

> Drive an)
Architecture Spike
An Architecture Enhancement is

evaluated by testing it out.

(") Software System: (any state)

Development Testing

("X Software System: Architecture Selected
(contributes to)
Architecture Enhancement: Approach
Verified

ef: Architecture Spike

R
) _ (¥ IVARJACOBSON
\ ‘ Generated byl racics Wortbencn™ 2018.09

Being agile means frequent
demonstration and release of
functionality and responding to
feedback and learning.

A good architecture approach is to
build first a deployable system that
does close-to-nothing (aka “Hello
World”) and then extend this working

Skinny System one Architecture

Enhancement at a time, one backlog
item at a time, and one test at a time.

Enables:

[Evolve Architecture Roadmap and

[Prepare Architecture
Ref: Skinny System

J

fpes-(aa) Q¥ R jacosson

'—| Skinny System

2018.09

i

A

Prepare
Architecture

Implement an Architecture
Enhancement to enable a

current or future needs.

\

iimplement the System - Test the System

Software System to respond to

(X Software System: Architecture Selected

* %

Development Testing

(X Software System: Demonstrable
(contributes to)

Architecture Enhancement: Ready for

Use

fes(an) (N MaricomsoN
Generated by Wi Practice Workbench™

2018.09

« Architecture Enhancement: These are similar to
Architecture Elements in the Incremental Funding
Methodology described by Mark Denne and Jane
Cleland-Huang in their book Software by Numbers
(Prentice Hall 2004), and also to Architectural Epics as
described in Dean Leffingwell’s Agile Software
Requirements (Addison-Wesley 2011).

* Architecture Ownership: See for example the
Architecture Owner section on p.76-78 of Scott
Ambler’s book Disciplined Agile Delivery (IBM Press
2012).

* Architecture Spike: This concept is part of Extreme
Programming (XP) — see for example
http://www.extremeprogramming.org/introduction.html.

« Essence Standard (OMG), refer to

* Skinny System: This is the name given to an early
version of the system that establishes an architectural
baseline by Ivar Jacobson and Pan Wei Ng in their book
Aspect-Oriented Software Development with Use Cases
(Addison-Wesley 2004).

-

0 IVAR JACOBSON
GanwaledbyiA Fracks Woribsecn 2018.09

Evolve and enact a strategy to enable
releases to be made in a frequent,
fast, safe and timely manner.

& (D @

Release Evolve Rel Product Rell
Management Strategy

(] =] &
Release Release Train Release on
Strategy Demand

[[4 5]

Clear the Road Go Live Resources

to Live

qY racomson 2015.00
Generated by I Practice Workbench™ .

-

+ The Essence of Software Engineering: Applying the
SEMAT Kernel, by Ivar Jacobson, Pan-Wei Ng, Paul E.
McMahon, lan Spence and Svante Lidman, Addison-
Wesley 2013.

IVAR JACOBSON
@@ O
\ () L o, 2608

4 I
|_I Release
Management
A single point of responsibility for ® ® e
ensuring that an optimized release l

strategy is evolved and executed.

Responsibilities of this individual or team

include ensuring that:

¢ Good release governance checks are
agreed, in line with the vision and release
strategy

¢ The right investments are made to
decrease delays and risks

* Each release is achieved in a smooth
and timely fashion.

Responsible For:
[Evolve Release Strategy and
[Clear the Road to Live
! Release Management

Ref:
i 1Y IVAR JACOBSON
N 172 2018.09
%, J

- N\

D Evolve Release
Strategy

Evolve a release strategy to maximize
responsiveness to business need,
enable value to be delivered as
frequently as business constraints
allow, and minimize delay and risk.

(") Software System

Stakeholder
Representation Management Development Testing

G Release Strategy: Checkpoints Specified
(") Product Release: Release Checks Agreed

IVAR JACOBSON
@@ O
\ (rn) DS 2018.09

4 N\
=
Release Strategy

Describes the planned

releases (including

internal, limited, full etc.),
covering goals, timing and
release process, including
quality, security and other checks
that are needed.

\ Goals and Targets Clear

/
\ Checkpoints Specified /

Describes: (X Software System

) _ (¥ IVARJACOBSON
\ ‘ Genersedty i racsos Woroenche 2018.09

p
D(Product Release

An increment of the]
product that is usable and
adds new value.

Goals Established

Ready to Release

(
(Release Checks Agreed
(
(

— J I

Released

Relates to: (X Software System

IVAR JACOBSON
@@ O
(ru) DS N 2018.09

‘—| Release Train

The Release Train metaphor involves
frequent, regular releases, e.g. daily,
or even many times daily.

New features that are ready can
"catch the train", the rest are left
behind, but can always "catch the
next train".

The more often trains depart the
better, so that business value spends
less time on average queued up to
wait for the next release.

Alternative To: [| Release on Demand
Shapes: G Release Strategy
Ref: Release Train

i .Y VAR JACOBSON
} eyt Pracio Ve 2018.09
%, J

|_| Release on
Demand

Make releases in response to business
demand.

This might mean targeting a release within
specified timescales, to support specific
business events, legal deadlines, or other
time-critical market or user needs.

This in turn might involve agreeing the
Minimum Viable Product (MVP) needed to
meet the time-critical needs, and tracking
progress towards achieving it, while
negotiating on scope to meet the release
timescales.

Alternative To: [| Release Train
Helps To Shape: G Release Strategy
Ref: Minimum Viable Product (MVP)

f
(aes)(rw) (1 VAR JACOBSON
Y Generated by i Pracice Workbench™ 2018.09

7

:> Go Live

A new live release is made, to
give some or all users access to
new or changed functionality, or
to fix an issue with a previous
release.

() Software System: Ready

LC)(Product Release: Ready to Release

Stakeholder i
Representation Management Development Testing

("X Software System: Operational
L(D(Product Release: Released

) _ (¥ IVARJACOBSON
\ ‘ Generated byl racics Wortbencn™ 2018.09

/ I

Clear the Road to
Live

Work to ensure that what is
being developed can be released
quickly and safely as soon as it
is ready for release.

——————————————————————————— \ Fmmmmm

iimplement the System - Test the System

* K% %

Management Development Testing

(X Software System: Ready
LC}(Product Release: Ready to Release

J

e _ 'Y IVAR JACOBSON
‘ gem.m by Pracice Workbencn™ 2018.09

A

2 (Card 1 of 2)\

r 1
. ¢ Resources

* Essence Standard (OMG), refer to

* Minimum Viable Product (MVP): Defined by
Frank Robinson, and popularized by Steve
Blank and Eric Ries — see The Lean Startup by
Eric Reis (Penguin 2011) and
duct.

* Release Management: A concept with a long
history. Dean Leffingwell describes an agile
approach to release management with a
Release Management Team in p.73-74 of Agile
Software Requirements (Addison-Wesley 2011).

* Release Train: This term for a series of regular
releases is part of Henrik Kniberg's description
of the Spotify Engineering Culture —
https;//labs.spotify.com/2014/03/27/spotify-

A@s_ ¥ VAR JACOBSON
\ ‘ Conersedbyia rack osbenca 2018.09

* The Essence of Software Engineering: Applying
the SEMAT Kernel, by Ivar Jacobson, Pan-Wei
Ng, Paul E. McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

IVAR JACOBSON
@ q
\ () DS 20808

|_I Environment
Team

In a large-scale agile delivery o0 e
endeavor, involving many "'
independent development teams,

significant investment is needed to ensure
that the required tools, environments, etc.
are available to the teams to enable them to
effectively collaborate to evolve a large-
scale, complex product.

The Environment Team is focused on
ensuring that the development teams have

access to these capabilities, tools and
environments.

Responsible For:
[Evolve the Environment and
[Support the Environment
ef: || Environment Team

a I

Automate and operate environments
to optimize the end-to-end delivery
process.

=1 @ =1
Environment Environment Automate the
Team Pipeline
[=] [
Evolve the Manage Testing Support the
Environment Debt Environment
=1 5]
Environmentas Resources
Code

IVAR JACOBSON
@ a@
\ (ov) L o, 2018.08

J

p
(:)(Environment

The environment includes all
the “boxes”, tools, @
configurations, workspaces
etc. needed to support code
production and promotion (e.g. dev.,
test, staging, prod. etc.).

Specified

Working Well

(
(In Place
(
(

— J J

Decommissioned

Relates to: (X Software System

R
Ge3ov) T Mamiacomson
Y Genersea by racie Workoencire 201 8.09/

). .Y IVAR JACOBSON
\ o5 201800

|_| Automate the
Pipeline

To reduce lead-time, automate

the development pipeline as

much as possible. Define,

exercise and refine the steps from
making a single software change to the
deployment of the software system into
production. Seek to automate every
single step through the environments.

OO

Dev. Test Staging Prod.

Part Of: [Evolve the Environment
Ref: Automate the Pipeline

IVAR JACOBSON
@@ 0
\ (o) DS 2018.09

7

Manage Testin
l_l Debt < :

Each team’s "Definition of Done"
should, ideally, cover all types of
testing. In practice teams simply may
not have the resources to run tests
such as stress, performance and
reliability as often as ideal.
The running of deferred tests needs to
be planned for and supported, so that
they can be run as frequently as
possible. Deferred tests are technical
debt, and should be reduced over
time so that they do become part of
the “Definition of Done”.
Part Of: [Evolve the Environment
Relates To: (X Software System

A@s_ (¥ IVARJACOBSON
\ ‘ Generated byt racic Vobenche 2018.09

-)

Evolve the
Environment

Evolve the environment to support the
development, test, and deployment of
the software system, including
specifying, setting up, making it
available to teams, and ensuring they
can access and use it.

(X Software System

(X Environment

iimplement the System HTest the System

* %

Development Testing

(X Software System: Ready (contributes to)
LC)(Environment: In Place

IVAR JACOBSON
@ O
‘ o oyt Pace vt 2018.09

A

J

D Support the
Enwronment
Keep the environment running,
help teams to use it well, and
optimize and refine its
configuration and usage, based
on experience and feedback.

("X Software System
(X Environment: In Place

{Implement the System’;
iTest the System :Deploy the System
w %

Development Testing

("X Software System: Operational (contributes

to)
LC)(Environment: Working Well or beyond

) _ ¥ VAR JACOBSON
‘ Ge nrsted i Frscice honsenca™ 2018.09)

p

|_I Environment as
Code

Scripts and configuration parameters
used in automation should be treated
like code. They need to be version-

in the software system. This ensures
that promotion and deployment is
deterministic and repeatable.

Also look to parameterize database
content to ensure all test conditions
are re-creatable and all tests are
repeatable.

Part Of: [Evolve the Environment and
[Support the Environment
ef: || Environment as Code

controlled like any other piece of code

R
Geaoy) NI Manacomson
S Generated oyl Fracice Workoenci™ 2018.09

\

A

the SEMAT Kernel, by Ivar Jacobson, Pan-Wei
Ng, Paul E. McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

¢ The Essence of Software Engineering: Applying

« Automate the Pipeline: See the “Automate
Almost Everything” principle on p.25 of
Continuous Delivery by Jez Humble and David
Farley (Addison-Wesley 2011).

* Environment as Code: See the “Keep
Everything in Version Control” principle on p.26
of Continuous Delivery by Jez Humble and
David Farley (Addison-Wesley 2011).

+ Environment Team: This concept is similar to
what Henrik Kniberg calls an Infrastructure
Squad (see for example
h ;

€ /'), and what Dean
Leffingwell calls a System Team, see p.71-73
of Agile Software Requirements (Addison-
Wesley 2011).

* Essence Standard (OMG), refer to
http://www.omg.org/spec/Essence/1.1/

(MR iaconson
Y Generatea y Ut ractce Workoencr™ 201 8.09J

Dev and Ops work together to respond to
customer needs and transition make live
releases frequently, smoothly and safely.

1Y) D PAe

Joint Rapid Monitor and Operations
Response Team Respond

@ (5] 5]
Production Design for End-to-End
Issue DevOps Optimization
=] 5]
Master Blameless Post- Resources
Deployment Mortem
through
Repetition

) +Y IVAR JACOBSON
\ b b 21800

). .Y IVAR JACOBSON
\ o5 2018.09

_| Joint Rapid
Response Team

Dev and Ops team members o0 e
work together as a rapid "'
response team to fix Production

Issues.

The team is responsible for all aspects
of the end to end process, from
diagnosis, through solution design,
development and test to deployment of
the code that fixes the issue.

Such a team can either be formed on an
as-needs basis, or as a permanently on-
call team, optionally with rotating
membership.

Performs: [Monitor and Respond

IVAR JACOBSON
@@ 0
\ (bo) DS 2018.09

7

P
* Operations

The ability to operate software
systems successfully, including
monitoring and maintaining systems
to maximize availability and
performance, and to make new
deployments safely and without
operational disruption.

| Innovates
| Adapts

| Masters

| Applies

X[

| Assists

Monitor and
Respond

Focus on the rapid detection and
resolution of any and all sources
of user dissatisfaction with the
operational system.

(X Software System: Operational

iimplement the System» i Test the Systéfﬁ‘)
iDeploy the System iOperate the System ;

* K &% K

Stakeholder i i
Reprecentation Analysis Development Testing

("X Software System: Operational
LC)(Production Issue: Resolved

) _ (¥ IVARJACOBSON
\ ‘ Genersedty i racsos Woroenche 2018.09

IVAR JACOBSON
@@ O
(bo) DS N 2018.09

p
D(Production Issue

Any production system
issue or potential I
enhancement that is
detected through operational
use, monitoring or end-user
feedback.

(Identified]
(Triaged]
(Resolved]

Relates to: (X Software System

n

) _ ¥ VAR JACOBSON
‘ Generatedy i Praciceorsenc 2018.09)

|_I Design for
DevOps

Deployability and operability are made

key architectural concerns:

¢ Involve Ops in the design process

¢ Design-in hot-deploy capability

¢ Reduce the blast area through
modular design to limit and localize
the impact of a failure

* Design for progressive release, e.g.
internal then progressively to ever-
larger user populations

¢ Layer the system (platform,
services, apps), and increase the
scope of DevOps progressively over
time, layer by layer.

Enables: [> Monitor and Respond

) VAR JACOBSON
Genersted oy Pacice Wortsenen™ 2018.09

A

|_| Master Deployment
through Repetition

If deployment is costly and painful it is
done less frequently, which makes it
more costly and more painful.

To turn this vicious circle into a
virtuous one, set hard goals to deploy
more and more frequently - e.g. from
once per week to multiple times per
day.

This can only be achieved by
investing in automation, version
control etc., and through close
collaboration between Dev and Ops.

Part Of: [_> Monitor and Respond

) _ (¥ IVARJACOBSON
\ ‘ Generated byl racics Wortbencn™ 2018.09

Ref: Master Deployment through Repetition

N

|_I End-to-End
Optimization

Use “systems thinking” to measure and
optimize the full “end-to-end” process,
e.g. from detection of need, to deployed
change that meets the need.

Avoid local measures and blinkered
change initiatives, e.g. focused on
reducing effort to develop without
considering deployment and operations.
Ensure failure demand (including
responding to production issues) is
measured, and systems thinking
employed to minimize it.

Part Of: [_> Monitor and Respond
Ref: End-to-End Optimization

J

). + Y IVAR JACOBSON
DS N 2018.09

A

|_| Blameless Post-
Mortem

Sometimes things inevitably do go
wrong. "Things going wrong" therefore
is not a matter for blame. Failure to learn
from things going wrong, on the other
hand, should be a matter of universal
shame and embarrassment.

The key is to have an open, all-inclusive,
post-mortem after every incident or
deployment, and agree specific changes
to improve the process in future and
reduce the risk of repetition of similar
issues.

Part Of: [Monitor and Respond
Ref: Blameless Post-Mortem

‘\

). .Y IVAR JACOBSON
}mmm oy Pracice worksencn™ 2018.09

« Blameless Post-Mortem: See "DevOps Patterns
Area 2: Create Production feedback into
Development" in The Top 11 Things You Need To
Know About DevOps v1.0 by Gene Kim (

* DevOps: The term "DevOps" was popularized
through a series of "DevOps Days" starting in 2009

« End-to-End Optimization: See for example "The
First Way" in Section 5: "Systems Thinking" in The
Top 11 Things You Need To Know About DevOps
v1.0 by Gene Kim (itrevolution.com).

* Essence Standard (OMG), refer to
http://www.omg.org/spec/Essence/1.1/

* Master Deployment through Repetition: See for
example Principles of Software Delivery: “Create a
Repeatable, Reliable Process for Releasing
Software” and “If it Hurts, Do It More Frequently
and Bring the Pain Forward” p.24-27 of
Continuous Delivery by Jez Humble and David
Farley (Addison-Wesley 2011).

IVAR JACOBSON
@ 0
\ (o) DS 2018.09

Targeted and account for funding and
ensure compliance with regulations,
processes and procedures.

D @ a
Establish Goals Checkpoint Dependency
and Checkpoints Map

(] D D

Compliance Align Track and Steer

Mandates Checkpoints the Work

=1 &=l
Better, Faster, Governance of Resources
Cheaper, Agile Contracts
Happier

) +Y IVARJACOBSON
\ o 21800

fesioo) (T Marcomson
Y Generateay U ractce Workoencn™ 2018.09)

The Essence of Software Engineering: Applying
the SEMAT Kernel, by Ivar Jacobson, Pan-Wei
Ng, Paul E. McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

Tl ¥ VAR JACOBSON
\ @ Generated by Prcice ssencn™ 2018.09

Establish Goals
and Checkpoints

Goals and checkpoints are agreed,
focusing on valuable outcomes and
critical compliance needs and
constraints.

iPrepare to do the Work;

K %

Leadership Management

("X Work: Prepared (contributes to)
i:ﬂ Dependency Map: Checkpoints Defined
Checkpoint: Defined (1 or more)

(X Way of Working: Principles Established
(contributes to)
Compliance Mandates: Policies Defined

P
C)(Checkpoint

A point in time at which a
meaningful and

measurable progression is
targeted to have been achieved,
including value release points
and quality gates.

(Defined]
(Aligned]
(Scheduled]
(Achieved]

Relates to: (X Work

IVAR JACOBSON
aes - Al
\ ‘ DS 2018.09

e)
(Compliance
Mandates
What compliance rules C—
and constraints must be y=

met, and how the work
must be conducted in order to
ensure compliance.

\ Checks Defined /
\ Policies Defined [
| Processes Documented |

Describes: (X Way of Working

A@s_ (¥ IVARJACOBSON
\ ‘ Genestedy i Pracic Woribenh™ 2018.09 y

C Dependency Map

Shows key time-critical
checkpoints and —aa
milestones that must be
achieved for the work to be on
track, and shows dependencies
that exist between them.

\ Checkpoints Defined |

\ Dependencies Identified /

e e e -

Timelines Captured i

-

Describes: (X Work

IVAR JACOBSON
aas)(ac) J
\ ‘ T 2018.09

Align
Checkpoints

Milestones and other checkpoints are
aligned and the goals and
dependencies are identified.

C| Dependency Map: Checkpoints Defined

(U)X Checkpoint: Defined (1 or more)

("X Way of Working: Principles Established

LG Compliance Mandates: Policies Defined

Leadership Management

(X Work: Under Control (contributes to)

G Dependency Map: Dependencies Identified
Checkpoint: Aligned (1 or more)

Tl .Y IVAR JACOBSON
. 201809 |

Track and Steer
the Work

Track progress towards achieving
checkpoints and goals. Adjust
approach, plans and goals based on
metrics data, feedback and learning.
(X Work: Started

{G Dependency Map: Dependencies

Identified
Checkpoint: Aligned (1 or more)

Leadership Management

(" XWork: Under Control
LC)(Checkpoint: Achieved (1 or more)

AR _ +Y IVAR JACOBSON
k ‘ DS 2018.09

J

~

C Governance of
Agile Contracts

When work is outsourced, the

and governance should focus on:

* Ensuring frequent delivery and acceptance
of releasable product (e.g. every 2—4
weeks)

» Tracking achievement of meaningful and
valuable outcomes and milestones, not
delivery of fixed product scope

* Responsiveness to change to maximize
ROI

« Stopping the work when goals are met and
ROl is diminishing.

Impacts: [Track and Steer the Work and
[Establish Goals and Checkpoints
Ref: Governance of Agile Contracts

\

. . ° o ® ..
contract must enable agile delivery, paMAg

s N
|_I Better, Faster,
Cheaper, Happier

Have clear and simple metrics that measure

what really matters, including value delivered /

accrued for investments made.

For agile delivery organizations a powerful

balanced scorecard covers:

* Better — e.g. improvements in service or
product quality

* Faster — e.g. lead time to value

* Cheaper — e.g. cost of ownership

* Happier — e.g. improved levels of
satisfaction of customers, employees and
stakeholders.

Influences:
[Establish Goals and Checkpoints
Supports: [Track and Steer the Work
Ref: Better, Faster, Cheaper, Happier

s _ (¥ VAR JACOBSON
\ ‘ Generated by racics Workbench™ 2018.09

f
faes)(ac) (1 VAR JACOBSON
Generated byl Practce Workbench™ 2018.09)

e)

N I
: =1 Resources
< Better, Faster, Cheaper, Happier: See

http://www.ivarjacobson.com/sustainable

¢ Governance of Agile Contracts: See
for example Agile Contracts by Andreas
Opelt et al. (Wiley-Blackwell 2013).

¢ The Essence of Software Engineering:
Applying the SEMAT Kernel, by Ivar
Jacobson, Pan-Wei Ng, Paul E.
McMahon, lan Spence and Svante
Lidman, Addison-Wesley 2013.

A@s_ ¥ VAR JACOBSON
\ ‘ Generated by Pracics Workbonch™ 2018.09

) -)

Team Of Teams C Collaboration
Essentials Lead
Achieve a collectively high-performing An experienced agile coaching o
team of collaborating teams. capability that is focused on '
ensuring that teams-of-teams can

= D = and do collaborate and communicate

Collaboration ~ Evolve Team Feature Team successfully to achieve shared goals, and
Lead Organization

that effective practices and capabilities are
cross-pollinated through capability sharing.

=Y B Y A Collaboration Lead will typically facilitate

Component Practice Cross- Team-of-Teams

Team Pollination Get-Together all team-of-teams events, meetings and
communications to ensure that they
= happen, are well prepared for, and are
Scrum-of- Resources successful.
Scrums
Facilitates:

[Practice Cross-Pollination and
[Evolve Team Organization

el +V IVAR JACOBSON @ .V IVAR JACOBSON
@ b A T =y

C N ~ ~
Evolve Team
Organization |—| Feature Team
The teams agree how they Teams are aligned to customer value,
should be organized to minimize and every team can and does build, test

. and make release-ready new user-facin
dependencies and collaborate . y g
value. In the ideal model, every team has

effectively when working on the capability and knowledge required to
tasks that cut across teams. make changes anywhere within the
()Team overall system architecture as needed to
implement new customer value.

Mature configuration management and
integration capabilities are needed to
enable many such teams to operate in
parallel safely and effectively.

iPrepare to do the Work’;

* K

Leadership Management

() Team: Formed or beyond (contributes to)

Way of Working: Principles Established " o
D((corz/tributes to)g P Guides: [Evolve Team Organization

Ref: Feature Teams

) .V IVAR JACOBSON @ LV IVAR JACOBSON
\ @ O 2018.09 7 i) |

~

|_| Component
Team

Teams are organized primarily around
top-level components of the overall
system architecture. This works well
when a software system is relatively new
to build up the core capabilities of each
component.

The down-side with this approach is that
the work of the different teams typically
needs to be integrated and tested before
value can be released, which can
increase time-to-value, and means that
delivery teams can lose direct contact
with customer value realization.

Guides: [> Evolve Team Organization
Ref: Component Teams

) +Y IVAR JACOBSON
k @ DS 2018.09

J

|_| Team-of-Teams
Get-Together

Have a regular, co-located event with as full
attendance as possible from all the
collaborating teams, e.g. 2 or 3 days in
duration, every 2 or 3 months.

The event can be used for review, planning
and related activities, such as team-of-team
retrospectives. It can also include
innovation activities such as “hackathons”.
This enables all these activities to be
prepared, organized and facilitated together
in one place and on a regular basis.

One Approach To:
[Practice Cross-Pollination
Ref: Team-of-teams Get-Together

2)

) (¥ VAR JACOBSON
\ @ Generated by racics Workbench™ 2018.09

Practice Cross-
Pollination

Teams share lessons-learned and
other knowledge, including good and
bad experiences with tools and
practices, and aim to cross-skill using
events such as coding dojos.

(XTeam
(CXWay of Working

Leadership Management

("X Team: Performing (contributes to)

(X Way of Working: Working Well (contributes
to)

ef: Coding Dojo

R
) + Y IVAR JACOBSON
@ DS N 201 8.09/

~

~

|—| Scrum-of-Scrums

An effective way to ensure ongoing
communication and collaboration across
many teams is a short, frequent regular
meeting of representatives from all the
teams.

This is the team-of-teams equivalent of
the team-level whole-team Daily Stand-
Up meeting (also known as a “Daily
Scrum”). It is less frequent (e.g. twice a
week), and involves e.g. 1-3 people from
each team — either team leads / "Scrum
Masters" and/or a rolling roster of
interested team members

Supports: [Practice Cross-Pollination
Ref: Scrum-of-Scrums

Tl .Y IVAR JACOBSON
@ QT 201809 |

~

¢ Coding Dojo: An in-house variant of a CoderDojo + Team-of-teams Get-Together: See Spotify “Hack

- see hitps://en.wikipedia.org/wiki/CoderDojo . Weeks” as described in Spotify Engineering

+« Component Teams: See “Conway’s Law” pattern
in Organizational Patterns of Agile Software Henrik Kniberg April 2014).
Development by James Coplein and Neil Harrison * The Essence of Software Engineering: Applying
(Prentice Hall 2007) and Ch.7 of Scaling Lean and the SEMAT Kernel, by lvar Jacobson, Pan-Wei
Agile Development by Craig Larman and Bas Ng, Paul E. McMahon, lan Spence and Svante
Vodde (Addison-Wesley 2009). Lidman, Addison-Wesley 2013.

« Essence Standard (OMG), refer to

« Feature Teams: See Ch.7 of Scaling Lean and
Agile Development by Craig Larman and Bas
Vodde (Addison-Wesley 2009).

¢ Scrum-of-Scrums: Described by Jeff Sutherland
in Agile Can Scale: Inventing and Reinventing

Scrum in Five Companies - see

https:

/

IVAR JACOBSON IVAR JACOBSON
@ g“m iPacs rtoona 2018.09 @ gmﬂ oyt Paccs ot 2018.09
N J N J
a)
> Schedule Cycles
Align work priorities and plans of Book cycles and related events in
many teams to overall goals using the calendar. Cycles are typically
synchronized planning cadences. longer than team-level timeboxes
B & L1 (e.g. 2 or 3 months rather than 2 or
Schedule Cycles Planning Cycle Synchronized .
Cadence 3 weeks), and related meetings and
o o D events also longer and larger in
Shared Resources Capacity Plan a Cycle equal BTSRE .
Allocation (X Work: Initiated
=] D {Prepare to do the Work?
Two-Pass ("W") Planning Board ~ Review a Cycl
woPIaansnsin(g) anning Boar eview a Cycle ﬁ
C] Management
Cycle Metrics Resources ("X Work: Prepared (contributes to)
LC)(Planning Cycle: Scheduled
¥ VAR JACOBSON ¥ VAR JACOBSON
Generte by P Viencas 2018.09 Generedy it Prcice rtoena™ 2018.09
J .

/

-
C)(Planning Cycle

A fixed time period R~
focused on building and '\
delivering value that is B
used to coordinate and align
multiple, smaller team-level
timeboxes.

SNe?

(Scheduled]
(Planned]
(Under Control]
(Reviewed]

Relates to: (X Work
Ref: Planning Cycle

e _ +Y IVAR JACOBSON
k ‘ DS 2018.09

|_I Shared
Resources

Decentralizing resources (placing all
people and capability into separate
development teams) does not always
maximize the flow of value through a
delivery channel.

Centralizing scarce resources can help
smooth flow and reduce queues and
lead time, provided there is enough
capacity for them not to be bottlenecks
during demand peaks.

Examples of specialist skills that might
be centralized include user experience,
security experts etc.

Impacts: [Plan a Cycle
Ref: Shared Resources

a)

s _ (¥ VAR JACOBSON
\ ‘ Generated by racics Workbench™ 2018.09

p

|_I Synchronized
Cadence

An effective way to manage work
across many interdependent teams is
to synchronize team-level timebox
“heartbeats” within a larger regular
cross-team cadence "Cycle". For
example, each team might have a 3-
week synchronized timebox
heartbeat, within a larger 12-week
cadence cycle. This enables ongoing
intra-team alignment (every team
timebox) and periodic inter-team
alignment around shared objectives
(every larger Cycle).

Relates To: (X Planning Cycle
Ref: Synchronized Cadence

) + Y IVAR JACOBSON
DS N 201 8.09/

~

Capacit
I_l Allgcatign

Allocate capacities to different kinds of
work (e.g. new features, architecture
enhancements, refactoring, defect fixing,
usability improvements etc.) to ensure
that each one gets a reasonable level of
attention.

This enables the software system to be
evolved in a balanced way, without
incurring excessive levels of technical
debt, for example.

Allocations should be continuously
monitored and periodically adjusted to
respond to changing priorities.

Part Of: [Plan a Cycle
Ref: Capacity Allocation

e)

el .Y IVAR JACOBSON
D 201800

> Plan a Cycle

Agree on a viable plan for the cycle
with the delivery teams. This is best
achieved as a cross-team event, as it
requires alignment of overall
objectives with team-level plans.

(CXWork: Initiated or beyond
LC)(Planning Cycle: Schedule

Leadership Management

(XWork: Started
LC)(Planning Cycle: Planned
LC] Planning Board: Dependencies Visible

IVAR JACOBSON
aes - Al
\ ‘ DS 2018.09

J

—
Planning Board

Shows key milestones and
timeboxes for the current |
Planning Cycle,

contributing teams (e.g. as
horizontal swim-lanes) and key
cross-team dependencies.

\ Cycle Objectives Visible

/
\ Timebox Objectives Visible |
/

\ Dependencies Visible

Describes: (X Planning Cycle

A@s_ (¥ VAR JACOBSON
\ ‘ Genestedy i Pracic Woribenh™ 2018.09 y

|_I Two-Pass ("W")
Planning

To Plan a Cycle use a two-pass approach:

1. From shared Objectives to team Plans,
then ...

2. Align plans across teams, Adjust team
plans, achieve shared Commitment.

Objectives Align Commit

Plan Adjust

An Approach To: [Plan a Cycle
Ref: Two-Pass (“W”) Planning

IVAR JACOBSON
aas) (7a) J
\ ‘ T 201 8.09/

> Review a Cycle

Review the outcomes of a
Planning Cycle as inputs for
adjusting plans and continuous
improvement.

(CXWork: Started or beyond

LC)(Planning Cycle: Under Control

Leadership Management

(_XWork: Under Control or beyond (contributes

to)
G Cycle Metrics: Results Analyzed

Planning Cycle: Reviewed

Tl .Y IVAR JACOBSON
. 201809 |

Cycle Metrics

CO mmun icates the « Capacity Allocation: See for example “Allocating
Capacity According to Demand” section in David
effectiveness of each Andersen’s book Kanban (Blue Hole Press 2010).
n . * Essence Standard (OMG), refer to
planning cycle as inputs hite://www.omg.
H * Planning Cycle: See for example “Principles of the
fOl' Improvement' Agile Release Train” on p.303 of Agile Software
Requirements by Dean Leffingwell (Addison-Wesley
2011).
* Shared Resources: See principle “F29: The Principle of
\ / Resource Centralization: Correctly managed,
centralized resources can reduce queues” p.206-208 of
\ Data Collected / The Principles of Product Development Flow by Donald

Metrics Defined

Reinertsen (Celeritas Publishing 2009).
* Synchronized Cadence: See The Principles of Product

Results Analyzed Development Flow by Donald Reinertsen, sections on
i e e i - Cadence (p.177-186) and Synchronization (p.186-191)
\ Trends Analyzed H (Celeritas Publishing 2009).

* The Essence of Software Engineering: Applying the
SEMAT Kernel, by Ivar Jacobson, Pan-Wei Ng, Paul E.
McMahon, lan Spence and Svante Lidman, Addison-
Wesley 2013.

Describes: (X Work

IVAR JACOBSON
D@ O
@) DS e 201808

‘1 IVAR JACOBSON

INTERNATIONAL
Generateay U ractce Workoencn™ 2018.09

4 :
>
3 9 EZX.
o & < % =
« Two-Pass (“W”) Planning: See for example “Multiple o I w << §
Team Release Planning”, p.153 of Scaling Software 9 % 3(: o § 5
Agility by Dean Leffingwell (Addison-Wesley 2007) and v 0] é 7 v bJ
“Release Planning” - ch.16 of Agile Software % v 8 <% 2 z
Requirements by Dean Leffingwell (Addison-Wesley E ﬁ § v} & 3 U] 8
2011). . h5oT %
< 9 2257 =}
I v QawRZz <g
a > w Ty
4 & w fzOoQ 5%
a < o0 U =2 o
& Z Zuw O ZT
0 a < 5625 i
4 o & g
=5 ’—JH o
w o g o x <
O o :: 5 ge
o T Z €] e}
W 5 Tk g C°
O L O =
-l Z C & <8 5 —m—
E a2 £ & 3 4 o«
' o) o d w0 w Z o
x z < E o S 0 s
E o o - = - o F
o S ¥ o wo w35 uw = D]
g < Z E Z o oo
F 0 E & E &
> O < w Y O 30z
< 3 a X < < VU @& w
;5 ¥ awBE0sx 000
i IVAR JACOBSON
a1 21800

Card Pack Contents
Copyright Statements

© 2018 Ivar Jacobson International SA. All rights reserved.

Ivar Jacobson and IJl Practice Workbench are trademarks or
registered trademarks of Ivar Jacobson International SA
and/or its subsidiaries.

The OMG and Essence content included is provided under
license by the following:

Copyright © 2013-2018 Data Access Technologies (Model
Driven Solutions), Florida Atlantic University, Fujitsu,
Fujitsu Services, Ivar Jacobson International AB, KTH Royal
Institute of Technology, Metamaxim Ltd., PEM Systems,
Stiftelsen SINTEF, and University of Duisburg-Essen and ©
1997-2018 Object Management Group.

Use of Essence — Kernel and Language for Software
Engineering Methods Specification is subject to the Terms,
Conditions & Notices found at
https://www.omg.org/spec/Essence/1.1

The alpha state checkpoint names included in the I
Essence Kernel are provided under license by SEMAT Inc.
under the Creative Commons Attribution CC International
Public License:

https://creativecommons.org/licenses/by/4.0/legalcode

\Copyright © SEMAT Inc. All rights reserved.

J

1JI1 PRACTICE
WORKBENCH

* Compose and publish your
own methods with UJI's
Practice Workbench

* Create print-ready cards or
export to HTML

ivarjacobson.com/

MOVE FROM
PROCESS TO
PRACTICES

e Get started with IJI’s Library
of Practices

* Ready to go practices to get
you up and running quickly

ivarjacobson.com/
practicelibrary

1J1 SUSTAINABLE
CHANGE
FRAMEWORK

e Achieve consistent and lasting
adoption of your agile
techniques across your broad
communities of practices!

e JI's Framework and Consulting
Services can help guide you.

ivarjacobson.com/
sustainable-agile-transformation

