
NOVEMBER 2013 | VOL. 56 | NO. 11 | COMMUNICATIONS OF THE ACM 54

TODAY, AS ALWAYS, many different initiatives are
under way to improve the ways in which software is
developed. The most popular and prevalent of these
is the agile movement. One of the newer kids on
the block is the Software Engineering Method and
Theory (SEMAT) initiative. As with any new initiative

people are struggling to see how it fits
into the world and relates to all the
other things going on. For example,
does it improve or replace their cur-
rent ways of working? Is it like lean,
which supports and furthers the aims
of the agile movement; or is it more
like waterfall planning, which is in op-
position to an agile approach?

Many have wondered whether SE-
MAT and agile are complementary or
competitive initiatives, and if they are
complementary, how do they fit to-
gether? In this article we demonstrate
how these two initiatives support each
other and we discuss the benefits of
using them together.

Generally speaking, both initia-
tives promote non-prescriptive value-

based philosophies that encourage
software development teams to select
and use whatever practices best fit
their context and, more importantly,
continuously inspect, adapt, and im-
prove their ways of working. These
two initiatives complement one an-
other, providing the perfect founda-
tion for teams that want to master the
art of software development.

The agile movement has provided a
new way of looking at the day-to-day ac-
tivities of software development—how
teams are built and work is organized.
This has led to the empowerment of de-
velopment teams and the prominence
of agile practices (such as Scrum and
test-driven development) as the mod-
ern developer’s practices of choice.

Agile and
SEMAT—
Perfect
Partners

DOI:10.1145/2524713.2524723

 Article development led by
 queue.acm.org

Combining agile and SEMAT yields more
advantages than either one alone.

BY IVAR JACOBSON, IAN SPENCE, AND PAN-WEI NG

55 COMMUNICATIONS OF THE ACM | NOVEMBER 2013 | VOL. 56 | NO. 11

practice

in fact, it is probably better if it is not.
What is important is the team mem-
bers are aware of what they have agreed
on, where they are aligned, and where
they might need help. The use of SE-
MAT helps teams reason about the way
of working and make fact-based deci-
sions about the breadth and depth of
their selected set of practices. Having
mechanisms to help understand the
strengths, weaknesses, and complete-
ness of their way of working is invalu-
able for those teams truly committed
to continual improvement.

Keep an up-to-date record of the
team’s way of working, and share in-
formation and experiences with other
teams. The agile community thrives
on collaboration and interaction.
The sharing of practices and experi-
ences helps individuals, teams, orga-
nizations, and the industry as a whole
improve and evolve. SEMAT provides
mechanisms to help teams accurate-
ly record their way of working in a
lightweight, agile fashion, which they
can share in real time with their col-
leagues and collaborators. This pro-
vides transparency with respect to the
team’s way of working, and it helps
everyone understand what the team
is doing without getting confused
by out-of-date descriptions of what
the team is supposed to be doing or
what the team members thought they
would be doing before they actually
gained experience doing it.

Be agile with methods, easily and
safely evolving the team’s set of prac-
tices as it inspects and adapts its way
of working. Inspecting and adapt-
ing the way of working is essential
for any agile team that truly wants to
continuously improve. Its effective-
ness can be hindered when teams:
become too wedded to the current set
of practices, effectively freezing their
way of working; select different but
less-effective practices that introduce
more problems than they address; or
do not understand where they are in
the evolution of the software system
and therefore which practices they
should change. SEMAT provides the
frameworks and thinking tools to
help teams more effectively inspect
and adapt their way of working, under-
stand the consequences of their deci-
sions, and continuously improve their
way of working.

SEMAT is a new way of looking at
the domain of software engineering
(here the term is used interchangeably
with software development), provid-
ing an understanding of the progress
and health of development efforts and
how practices can be combined into
an effective way of working. SEMAT
adds to the power of agility by provid-
ing a common reference model all
teams can when continuously inspect-
ing, adapting, and improving their
ways of working.

The two initiatives when used to-
gether, truly empower teams to in-
novate, experiment, and improve the
results they deliver.

This article focuses on how SEMAT
can help existing and future agile
teams. It is designed for those already
familiar with agility.

What SEMAT Adds to Agile
Agile provides a set of values that influ-
ence and shape the way software de-
velopers go about their daily work and
interact with one another, their cus-
tomers, and their stakeholders.

It has also given us many methods
that share common principles but dif-
fer in practice. These are methods that
developers must be able to inspect and
adapt as circumstances change. The
agile methods give teams a great start-
ing point on their agile journey but
they need to evolve to meet the team’s
changing needs and reflect the les-
sons they learn. This is reflected in the
growing number of agile teams that
assemble a bespoke method from the
available set of practices rather than
taking a made-to-measure method off
the shelf.

The use of SEMAT can help agile
teams do the following:

Detect systemic problems early and
take appropriate action. Agile teams
continuously inspect and adapt us-
ing fast feedback and close collabo-
ration to avoid problems and provide
direction to the team. To support
and encourage this way of working,
SEMAT provides a number of simple
checklists to help teams understand
their progress and health, and to help
them in the early detection of prob-
lems with their way of working. The
checklists that SEMAT provides are
akin to those used in other profes-
sions. For example surgery teams in

U.K. hospitals reduced death by sur-
gical errors by 47% by using a simple
19-question checklist that had ques-
tions such as “Do you know the names
of the other members of the surgical
team?” In the same way the use of the
SEMAT checklists reduces the risk of
teams failing catastrophically by help-
ing them avoid many of the common
mistakes that lead to failure such as
ever increasing technical debt, loss of
stakeholder support, inefficient ways
of working, unrealistic expectations
and dysfunctional teams.

Measure the team’s progress and
health regardless of the method or
practices selected. The key measure
of progress for all agile teams is the
amount of working software they pro-
duce and the speed with which they
produce it. SEMAT complements these
measures by providing another view
of the progress and health of the team
and its work—a view that can help
teams maintain their speed as they and
the systems they produce mature. By
using SEMAT and the simple checklists
it provides to assess their current state,
teams can easily understand where
they are, where they should go next,
and how their efforts fit within any or-
ganizational governance practices they
need to support.

Compare and contrast practices
and select the best ones for the team.
Agile teams are perpetually looking for
new practices to help them improve
their way of working and evolve their
methods. SEMAT provides the mecha-
nisms to understand the extent, pur-
pose, and content of practices, help-
ing teams understand their coverage
and where they overlap, conflict, or
complete. It also allows teams to plug-
and-play practices, safely mixing and
matching them within the context of
their favorite agile framework—for ex-
ample, Scrum or Kanban.

Evaluate the completeness of the
set of practices selected, and under-
stand the strengths and weaknesses
of the way of working. In the rush to
adopt new practices, teams sometimes
leave holes in their way of working,
the consequences of which often do
not become apparent until the team’s
speed starts to drop and it consistently
falls short in achieving its objectives.
This does not mean the way of working
needs to be predefined or complete;

practice

NOVEMBER 2013 | VOL. 56 | NO. 11 | COMMUNICATIONS OF THE ACM 56

By using SEMAT
and the simple
checklists it
provides to assess
their current state,
teams can easily
understand
where they are,
where they should
go next, and
how their efforts
fit within any
organizational
governance
practices they
need to support.

SEMAT for Agile Organizations
SEMAT provides additional support
that helps entire organizations be-
come agile without compromising the
agility of the teams that form them. In
particular, it helps:

Establish the ground rules for soft-
ware development within the orga-
nization, and capture organizational
values and principles in a practice-in-
dependent fashion. Software develop-
ment does not happen in isolation.
Development teams must always be
cognizant of the culture, values, and
principles important to the organi-
zations they work with. They need to
establish some common ground and
shared understanding with the other
teams and areas of the organization
they interact with. SEMAT provides
a simple definition of the common
ground shared by all software-de-
velopment teams. This forms a firm
foundation for organizations want-
ing to integrate software development
into their businesses and value flows.
Organizations can extend the SEMAT
definitions to capture any additional
rules or advice that applies to the spe-
cific kind of software they develop
or the specific environment within
which they develop it. Establishing
the common ground is a prerequisite
to organizational agility, but it is not
sufficient. It should be complement-
ed with an organizational practice ex-
change where the teams can share the
practices they use.

Define practice-independent gov-
ernance procedures and quality gates.
For business, legal, and safety-critical
reasons, many organizations feel the
need to apply governance to their soft-
ware-development efforts. Most large
organizations are legally required to
perform financial and/or technical
governance on their software teams
and the software they produce. Unfor-
tunately, many organizations define
their governance as a series of sequen-
tial phases, each with a predefined set
of required artifacts that must be com-
pleted and signed off before the next
phase can be started.

It is impossible for agile teams to
achieve their full potential in this kind
of rigid, prescriptive environment.
Governance is there to provide checks
and balances and ensure the quality of
the results produced. Governance pro-

cedures and quality gates should be
aligned to the natural evolution of the
software systems produced, focused
on the key results required rather than
artifacts to be produced, and mani-
fested as simple practice-independent
checklists. They would then provide a
framework to support, rather than in-
hibit, agile and lean ways of working.
This is the approach that SEMAT takes,
allowing governance procedures and
quality gates to be defined in a light-
weight and practice-independent fash-
ion. The agile teams can then mix and
match whichever agile practices they
desire, and they can continuously in-
spect and adapt without ever having to
fall out of governance.

Track and encourage the use of
practices within the organization.
Agile teams love to learn and share
new practices; it is a fundamental
part of the approach to continuous
improvement. By basing all software-
development effort around a common
ground, teams can more readily and
easily share their practices. By setting
up a practice exchange to facilitate the
sharing and distribution of practices,
an organization can gain insight into
which practices are being used where,
and which sets of practices are pro-
ducing the best results. This helps or-
ganizations to become true learning
organizations continuously evolving
their set of recommended practices,
withdrawing those that are past their
sell-by date, and promoting new prac-
tices when needed.

More readily and easily form teams
and mobilize teams of teams. Al-
though agile teams are intended to
stay together, the reality is they are
regularly changing team members,
even when they do not work for orga-
nizations that insist on matrix man-
agement approaches and constant
reorganization. Context switching
in this way can often reduce velocity,
increase friction, and waste time. SE-
MAT provides teams with a common
language for software engineering
that will help them understand one
another, clearly express themselves,
and share the practices they know—
all of which will help them collaborate
quickly and effectively—minimizing
wasted time, pointless discussions,
and unnecessary misunderstand-
ings. It also provides mechanisms for

57 COMMUNICATIONS OF THE ACM | NOVEMBER 2013 | VOL. 56 | NO. 11

practice

modeling the competency required
by teams and attained by individuals.
This can help organizations find the
right people to join the right teams
and then observe their development
as software professionals.

Scale agile approaches across teams
of teams and systems of systems. Scal-
ing agility is one of the biggest chal-
lenges currently facing organizations
that want to become more agile. The
SEMAT approach helps organizations
scale agility in a number of ways:

 ˲ It establishes a common ground
for all the teams involved. Scaled agil-
ity requires many teams to collaborate,
working on the same systems and im-
proving the same value flows. In this

Figure 2. Alpha state cards with checklists.

Figure 1. Software development as a multidimensional endeavor.

Team

Work

Software System

Requirements

Stakeholders

OpportunityWay of Working

practice

NOVEMBER 2013 | VOL. 56 | NO. 11 | COMMUNICATIONS OF THE ACM 58

situation it is even more essential that
all the teams have a shared understand-
ing of what they are doing and a shared
language to help them communicate.

 ˲ It allows teams to be flexible about
their practices. Scaling agility requires
even more flexibility in the set of prac-
tices that teams can use. Teams collab-
orating on the same system will need
to share practices with one another.
Teams working on certain systems
will need to use some of the practices
originally used to develop the system.
SEMAT’s ability to mix and match prac-
tices, swapping them in and out of play
as needed, provides the flexibility in
the way of working that teams need to
succeed in a scaled agile environment.

 ˲ It helps teams understand their in-
teraction points with other teams, the
boundary of their responsibilities, and
how their progress and health affects
the teams they work with. If everybody
is using a common ground to indicate
their responsibilities and how they are
progressing, then inter-team working
is easily monitored and improved.

Select enterprise-level tooling.
By providing a common ground for
software development, SEMAT also
provides a common ground for enter-
prise-level tooling. The separation of
the shared common ground from the
various practices used helps organi-
zations understand which practice-
independent tooling they need, which
practice-specific tooling they need,
and how these are related. SEMAT also
helps teams understand how to inte-
grate the tools they use by providing
definitions of the common elements
they will share.

What Agile Adds to SEMAT
SEMAT is nonprescriptive to such an
extent it does not even insist upon
adopting an agile approach. It does not
care what approach a team adopts as
long as it produces “good” software in
an effective and healthy fashion.

Adopting agile values brings many
benefits to teams and organizations—
too many to go into in this brief article.
For organizations adopting SEMAT,
agility adds a number of important ele-
ments in the area of software-engineer-
ing methods, including:

 ˲ Principles and values. The addition
of agile values to the SEMAT frame-
work provides a necessary qualitative

dimension to the evaluation of prog-
ress and health.

 ˲ Many practices. The agile com-
munity is a hotbed of new and inno-
vative practices, all of which could be
codified and made available as SEMAT
practices for teams safely to compare,
contrast, and mix and match.

 ˲ A driving force for improvement. Agil-
ity embeds the inspect-and-adapt cycle
into every aspect of the team’s work.

Before adopting SEMAT, a team
should establish the principles and val-
ues it would like its new way of working
to embody; otherwise, it will be very diffi-
cult to select the right practices or break
out of what can at first appear to be an
academic process-building exercise.

The brevity of this section, when
contrasted to the earlier “What SEMAT
Adds to Agile” section, is a reflection of
the broader acceptance and knowledge
of agility than SEMAT. It does not rep-
resent the relative value or impact of
the two initiatives.

How Does SEMAT Do All This?
The goal of the SEMAT initiative is to
provide software developers with a
sound practical and theoretical foun-
dation to improve their performance.
(For more detailed information, see Ja-
cobson et al.3)

The first step in the SEMAT initia-
tive is to establish a common ground
for software professionals (developers,
testers, among others) to stand upon
when they talk about what they do.
This common ground manifests itself
in Essence, a kernel of universal ele-
ments in software development—ele-
ments prevalent in every development
endeavor. Essence includes these ele-
ments: requirements, software sys-
tem, work, team, way of working, op-
portunity, and stakeholders.

These elements have states, which
can be used to measure progress and
health. For example, a team can take
the following states: seeded, formed,
collaborating, performing, and ad-
journed. To achieve a particular state,
a number of checkpoints must be ful-
filled, representing real achievements.
To achieve state collaborating, for
example, the following checkpoints
have been fulfilled: the team works
as one cohesive unit; communication
within the team is open and honest;
the team is focused on achieving the

team mission; and the team members
know each other.

Traditionally, checkpoints have
been used to measure the comple-
tion of an activity or a document, but
the SEMAT checkpoints measure out-
come. Thus, the universal elements
represent achievements rather than
documents or artifacts. This makes
them agnostic to any particular meth-
od—agile or not. These elements are
called alphas.

Software development is multi
dimensional, and alphas identify the
typical dimensions every software-
development endeavor must consider
to progress in a healthy manner. A ra-
dar chart, as depicted in Figure 1, gives
a view of the current progress along
each dimension.1 Each line originating
from the center represents an alpha,
and the radials on that line represent
the current state for that alpha.

Essence also provides a lightweight
approach to describe practices on top
of the kernel and thus extend the ker-
nel. From a library of practices, teams
can select appropriate ones and com-
pose them to get the way of working
they are satisfied with. In this way,
they can evolve their way of working
over time by replacing existing prac-
tices with newer and better ones. Prac-
tices can be of different kinds—for
example, business, social, or techni-
cal. Each practice can add guidance
for moving an alpha from one state
to another, or it can add alphas not
included in the kernel. In this way the
endeavor will add more dimensions.
It can also add work products to each
alpha it touches. For example, the
use-case-driven development practice
might add a use case as an alpha and
use-case specifications and realiza-
tions as work products.

Cards and Checklists. The Essence
specification provides a detailed de-
scription of the kernel alphas, includ-
ing the definition of their checkpoints.
In its daily work, however, a team
would not carry the Essence specifica-
tion with it. A more concise and practi-
cal representation in the form of a deck
of cards suffices. Figure 2 shows the
state cards for the team alpha.

Each card has the name of the alpha
at the top, followed by the state name
and a concise list of checkpoints. These
act as useful reminders for developers.

59 COMMUNICATIONS OF THE ACM | NOVEMBER 2013 | VOL. 56 | NO. 11

practice

The goal of the
SEMAT initiative is
to provide software
developers with
a sound practical
and theoretical
foundation to
improve their
performance.

was good. We then asked him to evalu-
ate progress using a deck of alpha
state cards. He laid the cards on the
table and started shifting them and
quickly identified that progress of the
stakeholders alpha was slow. He rec-
ognized this was a risk and made it a
point to work out a plan to address the
risk, which was basically to achieve
the first four states of the stakeholder
alpha. The initial discussion with this
coach took only 15 minutes. A further
discussion found the coach came from
a development background rather
than a business-analysis background,
which was probably the reason he ne-
glected the stakeholders dimension.

In this particular case, the coach in
question was weak in one area. In oth-
er cases, coaches had neglected other
dimensions represented by the soft-
ware-system alpha such as design and
quality. In yet other cases, there were
disagreements among team members
about the way-of-working alpha. What-
ever the case, the Essence alphas were
simple, intuitive, and effective tools
for evaluating progress and health.

Running Development in an
Internet Media Product Line
The next case study involves several de-
velopment teams in Beijing collaborat-
ing to deliver an Internet media server.
This was a new product line, and the
team members and leaders were rela-
tively junior. They had much to learn,
not just about how to work, but also
about their problem domain. In addi-
tion, they were transitioning from a tra-
ditional stovepipe organization where
testers and developers worked separate-
ly to one in which developers and testers
collaborated as a cross-functional team.

Our approach involved using the
kernel and the use-case-driven devel-
opment practice2 to design the team
visualization board shown in Figure
4. This team visualization board pro-
vided visualization from three differ-
ent perspectives:

 ˲ Process. This made the alphas vis-
ible to team members so they would
know their current iteration objectives
(that is, which kernel alpha states they
needed to get to). This also included a
section showing the current states for
the use-case slices they are working
on. A use-case slice is a piece of use
case that represents a unit of work.

Boards and Visuals. In addition to
state cards, there are alternative ways
of working with alphas—for example,
an alpha abacus, as shown in Figure
3. An abacus is a Chinese calculation
device with beads (counters) on a wire
(representing digits). In the alpha aba-
cus, each wire represents an alpha, and
each bead an alpha state.

This visual board can be used for a
variety of purposes. One possible use is
for a team to evaluate its current state
(where it is) and discuss its next objec-
tive (where it wants to go next). This is
easily visualized by drawing imaginary
lines and positioning the beads as
shown in Figure 3.

Games. Once cards and visuals are
available, it becomes natural to have
games. For example, Progress Poker,
a game that evaluates progress and
health, is similar to the Planning
Poker game used in agile methods. In
Progress Poker, each member of the
team selects a state card for each al-
pha to represent the current state of
development. If they all choose the
same state card, it means they have a
common understanding of the prog-
ress. If they choose different cards,
they probably have different under-
standings of where their development
stands, and different expectations of
what needs to be done. This misunder-
standing usually signifies the presence
of risks. Once it is discovered, team
members can have further discussions
to reach a consensus. Other games—
Objective Go, Chasing the State, and
so on—can be found at http://www.
ivarjacobson.com/alphastatecards.

Case Studies
The case studies described in this sec-
tion are good examples of how soft-
ware-development teams can make
good use of SEMAT and Essence.

Equipping Coaches in a Large
Telecommunications Company
We worked with a large Chinese tele-
communications-product company
that had a number of internal coach-
es. The capabilities of these coaches
were critical to each team’s ability to
improve. Equipping the coaches to de-
tect development problems early was
important. In our first contact with
one of the coaches, we asked how his
team was doing. He felt that progress

practice

NOVEMBER 2013 | VOL. 56 | NO. 11 | COMMUNICATIONS OF THE ACM 60

The states of a use-case slice were de-
scribed using state cards similar to
those in Figure 1. This made the crite-
ria for achieving each state visible to
team members during their daily work.

 ˲ Product. Each team was assigned
a use case. The use-case specifica-
tion and realization, represented by
a UML diagram, were pasted on the
team board and always represented
the current agreement. Changes were
scribbled onto the use-case specifica-
tion and realization. If they became el-
igible (after some significant changes),
someone on the team had to create a
clean version.

 ˲ Progress. Post-it notes represent-
ing use-case slices were pasted on the
board. During daily meetings, mem-
bers working on the use-case slices
would talk about their work in prog-
ress by referencing their slices against
the requirements and design, as well as
the “definition of done” from the pro-
cess visuals.

Having process, product, and prog-
ress visuals readily available not only
helped the junior members to under-
stand quickly what they needed to do,

Figure 3. Alpha abacus.

Where
we are

Where
we want

to go next

SolutionCustomer

Recognized

Involved

In Agreement

Represented

Satisfied for
Deployment

Satisfied
in Use

Stakeholders

Identified

Viable

Addressed

Solution
Needed

Value
Established

Benefit
Accrued

Opportunity

Endeavor

Initiated

Prepared

Started

Concluded

Under Control

Closed

Work

In Use

In Place

Working Well

Retired

Principles
Established

Foundation
Established

Way of Working

Collaborating

Adjourned

Seeded

Formed

Performing

Team

Bounded

Coherent

Acceptable

Addressed

Fulfilled

Conceived

Requirements

Demonstrable

Usable

Ready

Operational

Retired

Software
System

Architecture
Selected

Figure 4. Team visualization board.

Product visualization by pasting
use case specification and use
case realization on the team
visualization board.

Progress visualization by using
alpha states to highlight iteration
objectives and criteria for
progressing use case slices.

Progress visualization putting
use case slice under use
case slice state column
and referencing use case
specification and use case
realization.

61 COMMUNICATIONS OF THE ACM | NOVEMBER 2013 | VOL. 56 | NO. 11

practice

stand their areas of responsibilities
quickly as development grew from
eight people to 250.

A Firm Foundation for
Sustainable Improvement
SEMAT and agile are two complemen-
tary—and perfectly aligned—initia-
tives. They are both nonprescriptive
frameworks that help you think about
and improve your software-develop-
ment capability.

If you are serious about making
sustainable improvements in your
software-engineering capability, either
within your team or across your whole
organization, then the combination of
Agile and SEMAT offers many benefits
above and beyond those gained from
either initiative alone.

 Related articles
 on queue.acm.org

The Essence of Software Engineering: The
SEMAT Kernel
Ivar Jacobson, Pan-Wei Ng, Paul McMahon, Ian
Spence, and Svante Lidman
http://queue.acm.org/detail.cfm?id=2389616

UX Design and Agile: A Natural Fit?

Terry Coatta and Julian Gosper
http://queue.acm.org/detail.cfm?id=1891739

Breaking the Major Release Habit
Damon Poole
http://queue.acm.org/detail.cfm?id=1165768

References
1. Graziotin, D. and Abrahamsson, P. A Web-based

modeling tool for the SEMAT Essence theory of
software engineering. J. Open Research Software I, 1
(2013), e4; http://dx.doi.org/10.5334/jors.ad.

2. Jacobson, I. and Spence, I. Use case 2.0: Scaling up,
scaling out, scaling in for agile projects. Ivar Jacobson
International, (2011); http://www.ivarjacobson.com/
resource.aspx?id=1225.

3. Jacobson, I., Ng, P-W., McMahon, P., Spence, I. and
Lidman, S. The Essence of software engineering: The
SEMAT kernel. ACM Queue (Oct. 24, 2012); http://
queue.acm.org/detail.cfm?id=2389616.

Ivar Jacobson, chairman of Ivar Jacobson International,
is a father of components and component architecture,
use cases, the Unified Modeling Language, and the
Rational Unified Process. A contributor to modern business
modeling and aspect-oriented software development,
Jacobson is one of the leaders of SEMAT, working to renew
software engineering as a rigorous discipline.

Ian Spence is Chief Scientist at Ivar Jacobson
International, and has been involved in many large-scale
agile adoptions over the years reaching thousands of
people. He also led the work of the Essence kernal and
has co-authored three software development books.

Pan-Wei Ng is the Asia Pacific CTO at Ivar Jacobson
International. He is an advisor and coach to software
development organizations of all sizes and has helped
teams apply SEMAT ideas since its inception. He also
invented the alpha state cards while coaching in Japan.

© 2013 ACM 0001-0782/13/11 $15.00

but it also helped the team detect any
misconceptions quickly.

Improving Collaboration
Among Teams
This case study occurred in a Japanese
consumer electronics product line
of e-book readers. The company had
three models, each with different ca-
pabilities such as Wi-Fi or 3G access,
touchscreen, and so on. It had three
product teams (one for each model)
and three development teams, as
well as an acceptance test team, user
experience team, and hardware team.
Each team had about four members.
Because each team worked separate-
ly, coordination was poor, leading to
bottlenecks.

We helped the teams make their
development work visible through the
use of alphas. Specifically, they identi-
fied two alphas: a use-case slice and a
user-experience element. They defined
states for these alphas and the check-
points for achieving those states. They
made the current states visible on a
product-line visualization board simi-
lar to that in the previous case study,
with two exceptions: it had a section
for user-experience elements; and it
encompassed the entire product line
rather than a single team. This was
possible because the number of mem-
bers in each team was relatively small.

Team leaders used the product-line
visualization board to plan and discuss
progress. With the visualization board,
they were able to look ahead and make
necessary preparations. In this way each
team could make the effort to complete
their parts for each integration event,
thus eliminating bottlenecks.

Quick Start for Offshore
Collaboration
The final case study involved a Japa-
nese company that started a new prod-
uct line with the help of a Chinese off-
shore vendor providing development
and testing. The product line evolved
from an initial eight-person team,
with whom we worked primarily, into
50 (local Japanese) plus 200 (offshore
Chinese) members. These numbers
excluded hardware development and
local contractors (working on device
drivers) who were an integral part of
the overall development. This all oc-
curred in the span of about two years.

This Japanese company had no
described way of working, and the
Chinese vendor’s norm was to follow
its client’s approach, so there was
no starting point. Using Essence, we
were able to help the Japanese com-
pany describe a way of working that
included these practices: iterative
development, use-case-driven devel-
opment, continuous integration, and
test-driven development.

The next challenge was determin-
ing how to allocate parts of the devel-
opment to the Chinese vendors. The
Japanese company wanted this to be
gradual so that as the Chinese mem-
bers grew in their understanding, they
could take on larger responsibilities.
The allocation of responsibilities was
based on both architecture and pro-
cess. In terms of architecture, the Chi-
nese vendors could work on the user
interface and mid-tier areas, whereas
the device drivers and processing
closer to hardware specifics remained
within the Japanese developers’ re-
sponsibilities because this required
highly specialized skill and the hard-
ware was changing.

In terms of the development
process, the alpha states provided
a convenient way of discussing re-
sponsibilities and involvement. The
development process involved several
streams of work represented by the
alphas. The progress through the re-
quirements alpha states represents
the main development. Two other al-
phas were added to represent work on
architecture and acceptance.

In the beginning the Japanese cli-
ent had primary responsibility over
most of the alpha states. As the Chi-
nese vendor grew in knowledge, it as-
sumed greater responsibilities. The
alpha states provided a simple means
of agreeing on the collaboration. It is
important to note that when the Chi-
nese vendor assumed responsibility
over one alpha state, it did not mean
the Japanese shook off all involve-
ment. The Japanese developers were
still involved, but as assistants to the
Chinese members.

Using Essence, the Japanese prod-
uct-line organization could describe
their processes, responsibilities, and
involvement. It helped the teams get
started. It also helped team leaders
(both Japanese and Chinese) under-

