
acmqueue | september-october 2018 1

software development

T
he way we develop software struggles to keep
pace with changes in technology and business.
Even with the rise of agile, people still flip-flop
from one branded method to another, throwing
away the good with the bad and behaving more like

religious cultists than like scientists.
The problem is that the professional practices that

have been developed and refined over many years, and
that together represent our shared industry knowledge
and experience, are all too often imprisoned within
proprietary method jails. The only option that development
organizations and teams see themselves as having is
to adopt this method or that method wholesale, and
to reject all others—whereas, in fact, what is needed
is for organizations and teams to be free to select the
professional practices that they need, from wherever
these may be defined, and use them in whatever
permutations and combinations are appropriate to meet
the exact set of circumstances and challenges they face.

There is a simple way to break out of this cycle of

Essence: a new
way of thinking
that promises
to liberate
the practices
and enable
true learning
organizations

IVAR JACOBSON AND ROLY STIMSON, IJI

1 of 27 TEXT
ONLY

Tear Down the
Method Prisons!
Set Free the Practices!

acmqueue | september-october 2018 2

software development

unhealthy competition among methods—which are more
similar than they are different—and that is to free the
practices from their method prisons. Free the practices
to rise and fall on their own merits. Free the practices so
that teams can experiment, innovate, and plug and play
with proven practices to create the way of working that
they need today and to evolve seamlessly into the one they
need tomorrow.

This article explains why we need to break out of
this repetitive dysfunctional behavior, and it introduces
Essence, a new way of thinking that promises to free the
practices from their method prisons and thus enable true
learning organizations.

INTRODUCTION
The world has developed software for more than 50 years.
The software industry as a whole has been very successful.
We could choose to be happy and continue doing what we
are doing. Under the surface, however, everything is not
as beautiful: too many endeavors have failed, quality in
all areas is generally too low, costs are too high, time to
market is too long, etc. Obviously, we need better ways of
working or, in other words, we need better methods.

Here a method provides guidance for all the things you
need to do when developing software. In a keynote speech
at the 2003 XP conference in New Orleans, Ivar Jacobson
suggested a hypothesis that even if the number of methods
in the world is huge, it seemed that all of them were just
compositions of a much smaller collection of potentially
reusable “mini-methods,” maybe a few hundred in total.

2 of 27

acmqueue | september-october 2018 3

software development

These distinct mini-methods are what many people would
call practices. In this article, the term method stands for
related terms such as process, methodology, and method
framework, even if these terms, strictly speaking, have
different meanings.

As an industry we have searched for better methods,
following a zig-zag path moving from paradigm to
paradigm and from method to method, changing very
much like the fashion industry inspires wardrobe changes.
For example, during the 1970s and 1980s the Structured
Methods dominated; in the 1990s the Object or Component
Methods were favored; and since around 2000 the
Agile Methods have ruled. Right now, the top interest
is in Scaling Agile Methods. There are many competing
methods in this space: for example, SAFe (Scaled Agile
Framework), Nexus, and LeSS (Large-Scale Scrum). They
are all popular and used by organizations around the
world. They deliver value to their user organizations in
both overlapping ways and in specific ways.

Now, if they all are good, what are the problems?

1. Methods are essentially monolithic
Maybe the most limiting factor is that most methods are
monolithic, meaning they are not designed so that you can
easily exchange one practice with another from another
method, and keep the other practices intact. A method may
be modular, but the modules are unique for the method and
not reusable by another method.

3 of 27

acmqueue | september-october 2018 4

software development

2. Methods have a homegrown presentation
Each method has its own unique user experience and its
own structure, and uses its own style and terminology to
describe its selected practices. The owners of the method
have decided on these important aspects for themselves
without following any standard. As a result, its practices
are incompatible with practices from other methods.
Comparing or mixing methods is like comparing or mixing
cultures—if not impossible, then very hard, at best.

3. Methods have no common ground
Though every method has some unique practices, it has
a lot more in common with others. After all, they all deal
with software so they should share a lot. The fact is, what
they share is hidden and not explicit, so without deep
inspection it seems they share almost nothing, not even
the basics such as: What is Software? What is Software
Development? What are Requirements, Design, Test? What
are Team, Way of Working?

4. Practices are locked in method prisons
Today the practices within a method are locked into that
method—they are in method prisons—and cannot easily
be reused in other methods. In fact, to get a practice
incorporated in a method most likely requires that it be
rewritten to fit the homegrown style of that method.

5. Method prisons are controlled by
method wardens—gurus
The gurus control which practices should be combined
into their methods. They have extended their methods

4 of 27

acmqueue | september-october 2018 5

software development

with practices “borrowed” and “improved” from other
methods. The quotation marks indicate that it is not exactly
“borrowing” that happens, and it is not always “improving,”
but because of misunderstanding or reinterpretation
of the original practice, it can become a perversion or
confusion of the original.

The method reflects the particular perspectives,
prejudices, and experiences of its guru, and may not be
what the development community has collectively learned.

Let’s be clear that the gurus are not necessarily
striving for the position they placed them in. Since today
all practices are described as what we have called
homegrown, a guru who wants to “borrow” a practice
from somewhere else is forced to rewrite the “borrowed”
practice to make it fit within his or her method, and while
doing this, “improves” it.

6. We have been in a method war for 50 years
The owners of practices that are “borrowed” and
“improved” naturally feel that there has been
“misunderstanding” of their practices. This so-called
“borrowing” doesn’t stimulate collaboration among gurus.
Given the investment in time and capital by the owners
of these practices, they must defend their turf, resulting
in method wars. These wars started 50 years ago and
continue with no clear end in sight.

These six problems illustrate how immature our way
of working with methods is. We call these problems
collectively “the most foolish thing in the world” with
“the world” of course referring to software development
methods.

5 of 27

acmqueue | september-october 2018 6

software development

WHAT DO WE NEED TO DO TO GET OUT OF THIS
FOOLISHNESS?
The six problems identified in the previous section have
been addressed as indicated in figure 1.

1. Discover a standard kernel
It was obvious that a standard “kernel” would need
to contain “things” that are or should be prevalent in
any method,1 such as what are the essential things we
always work with and always produce, and what are the
essential competencies we always need when developing
software? The team that designed the kernel started off
specifying the criteria, principles, and features that should
guide their work in creating the standard. It is out of the
scope of this article to present these in detail, but let us
mention some (the quoted material comes from blogs and
work documents):

The essential things, the kernel elements, mentioned

6 of 27

FIGURE 1: Problems with methods and their solutions

All
methods

are
mono-
lithic

Modularize
the Methods

Free the Practices
from their methods

Specify a
standard
Language

Discover a
standard

Kernel

Every
method

is
home-
grown

Methods
have no
common
ground

Practices
are

captured in
method
prisons

Method
prisons are
controlled
by method

gurus

We are at
a methods
war since
50 years

Supported
by all four
solutions

PR
O

BL
EM

S
SO

LU
TI

O
N

S 123 4

5

acmqueue | september-october 2018 7

software development

above should be “applicable no matter the size or scale of
the software under development, nor the size, scale, or
style of the team involved in the development.”

“In essence it [the kernel] provides a practice-
independent framework for thinking and reasoning about
the practices we have and the practices we need. The goal
of the kernel is to establish a shared understanding of
what is at the heart of software development.”

The kernel elements should be: universal, significant,
relevant, defined precisely, actionable, assessable,
and comprehensive. Relevant is explained as “available
for application by all software engineers, regardless
of background, and methodological camp (if any),” and
comprehensive “applies to the collection of the kernel
elements; together they must capture the essence of
software engineering, providing a map that supports
the crucial practices, patterns, and methods of software
engineering teams.”

The following general principles are deemed essential
to finding a kernel: quality, simplicity, theory, realism and
scalability, justification, falsifiability, forward-looking
perspective, modularity, and self-improvement. Theory
means “the kernel shall rest on a solid, rigorous theoretical
basis;” realism and scalability mean “the kernel shall be
applicable by practical projects, including large projects,
and based where possible on proven techniques;” and self-
improvement means “the kernel shall be accompanied by
mechanisms enabling its own evolution.”

Moreover, the kernel should have these features:
practice independent, lifecycle independent, programming
language independent, concise, scalable, extensible, and

7 of 27

acmqueue | september-october 2018 8

software development

formally specified. Scalable is explained as the kernel
supporting the very smallest of projects—one person
developing one system for one customer—but it must
also support the largest of projects, in which there may
be systems-of-systems, teams-of-teams, and projects-of-
projects. Extensible means the kernel needs to possess the
ability to add practices, details, and coverage, and to add
lifecycle management and to tailor the kernel itself to be
domain specific or to integrate the software development
work into a larger endeavor.

With these guidelines, the team set out to find the
kernel. Figure 2 shows the essential things to work with—
the alphas.1

The alphas exist in three different areas of concern:
Customer, Solution, and Endeavor. The alphas are not
tangible, so they don’t represent work products such as

8 of 27

FIGURE 2: The alphas and their relationships

acmqueue | september-october 2018 9

software development

documents, but they have states that tell in which state
of the lifecycle of the alpha you are. Each state is defined
by a checklist that is agnostic to any specific method.
The checklist doesn’t measure which activities have been
performed or which documents have been written, but
they measure real outcome. For example, the Team alpha
has these checklist elements in state Formed: Enough
members recruited, Roles understood, How to work
understood, etc. Thus, the alphas are agnostic to any
method.

Apart from the alphas, the kernel has other types of
elements, but they are not key to following the discussion
in this article.

2. Specify a standard language
To be able to reuse existing practices, the practices cannot
be described in a homegrown way, specific to the method
that uses it. We need a common language—a lingua
franca—a formal language with syntax and semantics.

As with the kernel, what was expected was formulated
as requirements of the language. For example: “The
language should be designed for the developer community
(not just process engineers and academics),” which is
a requirement asking for a simple, visual, intuitive, and
engaging user experience in working with methods and
practices. With the language in figure 3, we would be able
to describe practices so they are reusable by any method.

The Language and the Kernel together form a Common
Ground, something we have been missing for all these years
of software engineering. In 2014, OMG (Object Management
Group) adopted it as a standard, called Essence.4

9 of 27

acmqueue | september-october 2018 10

software development

3. Modularize the methods
The team needed to agree on what a practice is. They
said, for example: “A practice is a separate concern of a
method”; “every practice, unless explicitly defined as a
continuous activity, has a clear beginning and an end”; and
“every practice brings defined value to its stakeholders.”
The team designed the method architecture as shown in
figure 4. Practices became First-Class Citizens.

The two lowest layers are represented by Essence—
the language and the kernel. The third layer consists of
practices described using Essence, with the kernel being
the standard vocabulary.

4. Free the practices from their methods
Essentialization of a method means: (1) Identify the (often
hidden) practices of the method; (2) Separate them from
one another (even if they are not independent); (3) Describe
each practice using Essence (kernel and language); (4) Build

FIGURE 3: The elements in the language

Repeatable approach to
achieving a specfic objective

Key element to progress and
to assess the progress and

health of an endeavor

Artifact such as a
document or a piece
of software

Generic mechanism
for describing other
elements and their
relationships

Work to be
performed

described in terms of

requires

progress

describe

produce

Practice

Activity

Alpha Work
Product

PatternCompetency
Capabilities, knowledge
and skills needed to do a

certain kind of work

10 of 27

acmqueue | september-october 2018 11

software development

and preserve a sound practice architecture (resolving
dependencies among the practices) to facilitate flexible
recomposition of the practices; and (5) Ensure that the
method owner agrees that the essentialization truly
reflects their intentions, or modifies until this condition
is fulfilled. The latter is the hardest part of the job for
obvious reasons.

Essentialization unlocks the practices from the methods
and makes them free to select and create any method
needing them.

5. No more method wars
Addressing the problems as suggested in points 1-4 in this
section should lead to a significant reduction in method
wars. The battle will no longer be about methods. Instead,
the debate will move to a discussion of which practices
are most suitable in particular situations. This is where the

FIGURE 4: Essentialized Practices and Methods

11 of 27

acmqueue | september-october 2018 12

software development

battle should be fought—among specialists on subjects
about which they are real experts. Today the wars are less
focused. There is no need to create new cultures with their
own values. The discussion should invite everyone with
something to say.

HOW TO ESCAPE THE FOOLISH PROBLEMS
Moving from idea to tangible result is a long journey. We
first have to find a common ground.

Essence—the common ground of software engineering
As a response to “the most foolish thing in the world,”
the work on an escape route from the many problems
started in 2006 at IJI (Ivar Jacobson International). In
2009 the SEMAT (Software Engineering Method and
Theory) community was founded, and in 2011 the work
was transferred to OMG, which eventually gave rise
to a standard common ground in software engineering
called Essence.4 Essence became an adopted standard
in 2014. Thus, Essence didn’t come like a flash from the
brow of Zeus, but was carefully designed based on a vision
statement written by the founders of SEMAT in 2010.

We were also inspired by Michelangelo: “In every block
of marble I see a statue as plain as though it stood before
me, shaped and perfect in attitude and action. I have only
to hew away the rough walls that imprison the lovely
apparition to reveal it to the other eyes as mine see it.”
We felt that from all this mass of methods we had to find
the essence, so we paraphrased Michelangelo: “We are
liberating the essence from the burden of the whole.”

And by Antoine de Saint-Exupéry: “You have achieved

12 of 27

acmqueue | september-october 2018 13

software development

perfection not when there is nothing left to add, but
when there is nothing left to take away.” We took a very
conservative approach in deciding what should be in the
kernel and what should be outside the kernel. It is easier to
add new elements to the kernel than to take them away.

Using Essence
Instead of giving the whole theory behind Essence,
which we have done many times,1 we will show its usage
by presenting a practice described on top of Essence—
using Essence as a platform to present the practice. We
have selected User Stories as an example of an Essence
practice, here calling it User Story Essentials, shown as a
Big Picture in figure 5.

The flow of this practice is as follows:

FIGURE 5: The User Story Essentials Practice

13 of 27

acmqueue | september-october 2018 14

software development

3 First we need to Find User Stories. This activity identifies
one or more User Stories, each documented by a Story
Card with just enough information to ensure that the User
Story has its value expressed.
3 On a story-by-story basis, we will select a User Story
that we wish to get done next, and then we use the Prepare
a User Story activity to get it ready for development,
which also involves elaborating the associated Test Cases.
(Note that we use the convention that the User Story
alpha appears in outline form in its later stages to indicate
that this is not a new element but the same User Story as
before it progressed through its states.)
3 The final activity that this practice describes is how we
work to Accept a User Story, the successful completion of
which gets the User Story done.

It is not our intention to describe the entire User Story
practice but to provide a good understanding of what an
essentialized practice looks like.

An essentialized practice or method is described using
Essence, which focuses the description on what is essential.
It doesn’t mean changing the intent of the practice or the
method. Essentialization provides significant value. We as
a community can create many practices coming from many
different methods. Teams can mix and match practices from
many methods to get a method they want. If you have an
idea for a new practice, you can just focus on essentializing
that practice and make it available for others to select; you
don’t need to reinvent the wheel to create your own method.
This liberates that practice from monolithic methods, and
it will open up the method prisons and let companies and
teams get out to an open world.

14 of 27

acmqueue | september-october 2018 15

software development

The User Story practice when essentialized is presented
as a set of 14 cards. Figure 6 shows a representative set of
five cards, briefly described here.

FIGURE 6: Five cards form the User Story Essentials practice

15 of 27

acmqueue | september-october 2018 16

software development

User Story Essentials (Index Card)
This provides:
3 A brief description that gives insight into why (benefits)
and when (applicability) we might use the practice.
3 A contents listing showing named practice element icons
for all the elements within the practice (each of which is
described with its own card).

Note that the color coding gives an immediate visual
indication of the scope of application of the practice. In this
case we see that the practice consists of:
3 Mainly yellow cards, the Essence color coding for the
Solution area of concern—telling us that this practice is
concerned with the software system we are building and
its requirements.
3 One green card, the Essence color coding for the
Customer area of concern—telling us that the practice
also concerns itself with how we interact with customer
area concerns such as the Opportunity and the
Stakeholders.
3 No blue cards. Essence has three areas of concerns, the
third color-coded in blue standing for the Endeavor area of
concern. The User Story Essentials practice has no cards in
this area.

Note also that in this case there is a strong separation
of concerns between the Solution and Customer areas
of concern that User Story Essentials addresses and the
Endeavor area of concern, which includes concerns such
as the Team and how we manage the Work. The practical
consequence is that this practice can be used with any
number of different management practices that mainly

16 of 27

acmqueue | september-october 2018 17

software development

operate in the blue Endeavor area of concern, such as a
timeboxed Scrum-style approach to work management or
a continuous-flow Kanban-style approach.

Essentialized practices can be described at different
levels of detail. The cards in this practice don’t attempt to
provide all the information that, for example, a novice team
would need to successfully apply the practice. If history
has taught us anything, it is:
3 No amount of written process enables novices to
succeed without expert support.
3 The more words there are, the less likely that any of
them will be read.
3 Instead of “borrowing and rewriting” other people’s
words when it comes to the more voluminous detailed
supporting guidance, it is better simply to reference the
original sources of this guidance.

Essentialized practices such as this one are based on
the principle that novice teams need support from expert
coaches to be successful. The cards become a tool for
expert coaches to use to help teams adopt, adapt, and
assess their team practices, or for expert teams to use in
the same way.

User Story (Alpha)
This is a key thing that we work with, that we need to
progress, and the progression of which is a key trackable
status indicator for the project—think of alphas as what
you expect to see flowing across Kanban boards, having:
3 A brief description that makes clear what this thing is and
what it is used for.

17 of 27

acmqueue | september-october 2018 18

software development

3 A sequence of states that the item is progressed
through—in this case from being Identified, through to
being Ready for Development, through to being Done.
(Think of these as candidate columns on a Kanban board—
although teams may want to represent other interim
states as well depending on their local working practices.)
3 The “parent” kernel alpha to which the multiple User
Stories all relate (the Requirements in this case).

Story Card (Work Product)
Work product cards give guidance on the real physical
things that we should produce to make the essential
information visible—in this case a key defining feature of
the User Story approach is that we use something of very
limited “real estate,” an index card or electronic equivalent,
as the mechanism for capturing the headline information
about what we want to build into the Software System. The
work product has:
3 A brief description.
3 A Level of Detail that we progressively elaborate—in
this case indicating that we initially ensure that we have
captured and communicated the value of the User Story,
and that we also need to continue at some stage to list
the acceptance criteria - the dotted outline of the third
level of detail indicating that we may or may not capture
associated conversations—for example, in an electronic
tool if we are a distributed team.
3 The alpha that the work product describes—a User Story
in this case.

18 of 27

acmqueue | september-october 2018 19

software development

Find User Stories (Activity)
This gives guidance to a team on what they should actually
do, in terms of (in this case):
3 A description of the activity.
3 An indication of the competencies and competency
levels that we need for the activity to be executed
successfully. For example, the card requires Stakeholder
Representative competency at level 2 and Analysis
competency at level 1 (all of which are defined in the
Essence kernel).
3 An indication of the activity space in which the activity
operates (i.e., what “kind of thing it helps us do” (in this case
“Understand the Requirements”).
3 An indication of the purpose of the activity expressed
as the end state that it achieves—in this case a User Story
is Identified and a physical Story Card is produced that
describes the value associated with the User Story.

Note that activities are critical because without them
nothing actually ever gets done; it is remarkable how many
traditional methods inundate readers with posturing and
theorizing without actually giving them what they need,
which is clear advice on what they should actually do!

Customer Team (Pattern)
Patterns give supporting guidance relating to other
elements and/or how these relate to each other, in terms
of (in this case):
3 Textual description, encapsulating the critical aspects of
the guidance that the pattern provides.
3 Named associations, showing which other element or

19 of 27

acmqueue | september-october 2018 20

software development

elements the pattern relates to primarily—in this case the
User Story.
3 A reference link to a named reference on the resources
card, which in turn provides one or more pointers to
sources of more guidance or information.

Putting it all together
We have now described a representative subset of the
different types of cards used in the User Story Essentials
practice, so we will not describe the other cards because
the story would rapidly become familiar and repetitious.
This is part of the value of using a simple, standard
language to express all our practice guidance.

Now that we understand what all the cards mean, we
also need to understand at a high level how the whole
practice works. The cards themselves give us all the clues
we need about how the elements fit together to provide an
end-to-end story—which activities progress which alphas
and produce which work products—but it is also useful
to tell the joined-up story in terms of end-to-end flow
through the different activities. Figure 5 gives just such an
overview of the flow through the practice, which we repeat
and summarize here:
3 First we need to find User Stories. This brings one or more
User Stories into existence in the initial Identified state, each
documented by a Story Card with just enough information to
ensure that the User Story has its Value Expressed.
3 On a story-by-story basis, we will select a User Story
that we wish to get done next, and use the Prepare a User
Story activity to progress the User Story to be Ready for
Development. This involves ensuring that we have the

20 of 27

acmqueue | september-october 2018 21

software development

Acceptance Criteria Listed on the Story Card, during which
we may also get any supporting Conversation Captured. As
part of this same activity we also elaborate the associated
Test Cases.
3 The final activity that this practice describes is how we
work to Accept a User Story, the successful completion of
which moves the User Story to the Done state.

Notice that this chaining of activities, primarily via the
state of the things that they progress, does not over-
constrain the overall flow. It does not, for example, imply a
single-pass, strictly sequential flow. We might iterate the
different activities for different User Stories in different
ways. Exactly how we do so may be further constrained as
part of adopting other practices. For example, if we use the
User Story practice in conjunction with Scrum, as is very
common, we may agree to the following general rules as a
team:
3 Do the Find User Stories activity before we start our
First Sprint, but also allow this to happen on an ad hoc
basis ongoing.
3 Do the Prepare a User Story activity before the first
Sprint and then during each Sprint for the User Stories for
the next Sprint, in time for Sprint Planning.
3 Aim to Accept a User Story as soon as it is done, to get all
the User Stories selected for the Sprint Done before the
end of the Sprint Review.

To summarize the general rules and principles
illustrated here:

Essence distinguishes between elements of health and
progress versus elements of documentation. The former

21 of 27

acmqueue | september-october 2018 22

software development

are known as alphas, while the latter are known as work
products. Each alpha has a lifecycle moving from one alpha
state to another. Work products are the tangible things
that describe an alpha and give evidence to its alpha states;
they are what practitioners produce when conducting
software engineering activities, such as requirement
specifications, design models, code, and so on. An Activity is
required to achieve anything, including progressing Alphas
and producing or updating a Work Product. Activity spaces
organize activities. To conduct an activity requires specific
Competencies. Patterns are solutions to typical problems.
An example of a pattern is a role, which is a solution to the
problem of outlining work responsibilities.

Essence, in defining only the generic standard “common
ground,” defines no work products, activities, or patterns,
since these are all practice-dependent. It defines seven
alphas each with defined states, 15 activity spaces, and six
competencies, which are all practice agnostic. Practices
defined on top of Essence introduce new elements or
subtypes of the standard kernel element types.

Key features and benefits of essentialized practices
Some of the key features and benefits of essentialized
practices as illustrated by the User Story Essentials
example, are:
3 The practice is tightly scoped. It tells us how to do one
thing well. In particular, the practice does not constrain or
limit any of our other choices regarding other practices we
may want to use to handle other aspects of our endeavor
(Scrum, Kanban, etc.).
3 The practice is concisely expressed. Only a subset of the

22 of 27

acmqueue | september-october 2018 23

software development

cards are shown in the User Story Essentials example, but
physically the cards in the practice together represent
roughly the equivalent of the size of a sheet of A4 paper.
3 The practice is accessible and can be interacted with
through the cards, which are used in all kinds of ways.
This includes making the team’s way of working instantly
visible, self-assessing the adequacy of local practices, and
prioritizing improvement areas.
3 The practice is expressed in a simple, standard way.
When you understand these four cards from User Story
Essentials, there are no barriers to understanding any
other essentialized practice from any other source. Just
because you like this User Story practice, you aren’t now
captive in its method prison. Instead you are free to roam
the open market to select any other practices from any
other sources.
3 The practice is described in relation to the Essence
standard kernel, thus ensuring it interoperates in well-
defined ways with any other essentialized practices.
3 This same fact enables the scope and coverage of
any practice to be instantly assessed. Our practice
adds activities into the Essence kernel activity spaces
“Understand the Requirements” and “Test the System,” but
adds nothing to the other 13 activity spaces outlined by
the Essence kernel (“Implement the System,” “Deploy the
System,” etc.). Thus, if this is the only practice we adopt, it is
clear that we have no agreed-upon or defined way of doing
these other things. This may or may not be a problem, but it
is at least a clearly visible fact.
3 The practice contains all the essentials. If you are not
working according to these essentials in some form,

23 of 27

acmqueue | september-october 2018 24

software development

then you cannot reasonably claim to be doing User Story
Essentials as a practice.

WHAT WE DO
The Essence common ground has been recognized by both
industry and academia.

Fujitsu UK and Munich Re have been using Essence for
many years and contributed to its development. Several
of the largest and most prestigious companies in the
world are on a path to essentialization—for example, Tata
Consulting Services, Red Hat, and a major telecom vendor
in East Asia. In collaboration with Jeff Sutherland, co-
creator of Scrum, Scrum has been essentialized. Similarly,
with Scott Ambler, key practices of DAD (disciplined agile
delivery) are being essentialized.

On the academic side we quote professor Pekka
Abrahamsson (NUST): “…we have successfully taught
Essence in Software Engineering course to 460 students…
Essence empowered students to gain control of their
project, work methods and practices. We have finally moved
beyond Scrum and Kanban… my Software Engineering
education in the future will be driven by Essence.”

Universities around the world are already teaching
Essence to some extent (e.g., Carnegie Mellon University
West, Florida Atlantic University, Copenhagen, Oslo,
Stockholm, Vienna, Seoul, Beijing, Johannesburg, Medellin,
São Paulo, Mexico City, St. Petersburg, Wellington). A
project called Software Engineering Essentialized for
first-year students started almost three years ago and has
resulted in a new book with the same title, to be published
soon. The project has drawn the participation of more than

24 of 27

acmqueue | september-october 2018 25

software development

50 university teachers worldwide,
of whom more than 25 are active.

REFLECTION
Can we truly enable and empower
our teams and become true
learning organizations while we
behave more like the fashion
industry rather than an engineering
profession? Can we really see
ourselves as an open, diverse, and
collaborative community while
we continually attack one another
and rebrand, reinvent, and rename
everything like old hipsters trying
to stay in with the in crowd? Are
we doomed to be locked in a never-
ending method war in the hope that
the one true way emerges to rule
them all?

The answer is, of course, no. By
essentializing the most interesting

methods in existence today and freeing the practices, an
ecosystem of practices will allow us to create the methods
we need—also the good ones now in existence—and to
upgrade these methods as new or improved practices
become available.

We have reason to have high expectations. There is
early evidence that teams will be able to learn and come
up to speed significantly faster. Projects can measure
progress and health of an endeavor independent of which

Related articles

3 A Conversation with Steve Bourne,
Eric Allman, and Bryan Cantrill
Three Queue editorial board members
discuss XP and agile, and the practice of
software engineering.
Part 1: https://queue.acm.org/detail.
cfm?id=1413258
Part 2: https://queue.acm.org/detail.
cfm?id=1454460

3 Breaking the Major Release Habit
Can agile development make your team
more productive?
Damon Poole
https://queue.acm.org/detail.cfm?id=1165768

3 This is the Foo Field
The meaning of bits and avoiding
upgrade bog downs
Kode Vicious
https://queue.acm.org/detail.cfm?id=2566971

25 of 27

https://queue.acm.org/detail.cfm?id=1413258
https://queue.acm.org/detail.cfm?id=1413258
https://queue.acm.org/detail.cfm?id=1454460
https://queue.acm.org/detail.cfm?id=1454460
https://queue.acm.org/detail.cfm?id=1165768
https://queue.acm.org/detail.cfm?id=2566971

acmqueue | september-october 2018 26

software development

method they use. People will get a common language to
use across product lines. Most important, organizations
that adopt Essence are expected to become forever-
learning organizations and will move from primarily
relying on software development as a craft to being an
engineering discipline.2,3

As if that were not enough, based on the great interest
from systems engineering experts, in particular from
several key leaders in the INCOSE (International Council
on Systems Engineering) community such as Bud Lawson,
there are already proposals on how to modify the
Essence kernel so it can also support systems engineering
practices. And why not practices for any human endeavor?

References
1. Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., Lidman,

S. 2012. The Essence of software engineering: the SEMAT
kernel. acmqueue 10 (10); https://queue.acm.org/detail.
cfm?id=2389616.

2. Jacobson, I., Seidewitz, E. 2014. A new software
engineering. acmqueue 12 (10); https://dl.acm.org/citation.
cfm?id=2693160.

3. Jacobson, I., Spence, I., Seidewitz, E. 2016. Industrial-
scale agile: from craft to engineering. acmqueue 14 (5);
https://queue.acm.org/detail.cfm?id=3012428.

4. Object Management Group. 2014. Essence—kernel and
language for software engineering methods; http://www.
omg.org/spec/Essence/.

Ivar Jacobson received his Ph.D. in computer science from
KTH Royal Institute of Technology, was rewarded the Gustaf

26 of 27

https://queue.acm.org/detail.cfm?id=2389616
https://queue.acm.org/detail.cfm?id=2389616
https://dl.acm.org/citation.cfm?id=2693160
https://dl.acm.org/citation.cfm?id=2693160
http://dl.acm.org/author_page.cfm?id=81100030692&CFID=923833636&CFTOKEN=20194279
http://dl.acm.org/author_page.cfm?id=81548005181&CFID=923833636&CFTOKEN=20194279
http://dl.acm.org/author_page.cfm?id=81100621844&CFID=923833636&CFTOKEN=20194279
http://dl.acm.org/citation.cfm?id=3009830&CFID=923833636&CFTOKEN=20194279
http://dl.acm.org/citation.cfm?id=3009830&CFID=923833636&CFTOKEN=20194279
http://www.omg.org/spec/Essence/
http://www.omg.org/spec/Essence/

acmqueue | september-october 2018 27

software development

Dalén medal from Chalmers in 2003, and made an honorary
doctor at San Martin de Porres University, Peru, in 2009. He
has both an academic and an industrial career. He has written
10 books, published more than 100 papers, and is a frequent
keynote speaker at conferences around the world. He is a
father of components and component architecture, work
that was adopted by Ericsson and resulted in the greatest
commercial success story ever in the history of Sweden, and
it still is. He is the father of use cases and Objectory, which,
after the acquisition of Rational Software in 1995, resulted in
the Rational Unified Process, a widely adopted method. He
is also one of the three original developers of UML (Unified
Modeling Language). But all this is history. Jacobson founded
his current company, Ivar Jacobson International, which since
2004 has been focused on using methods and tools in a smart,
superlight, and agile way. This work resulted in Jacobson
becoming a founder and a leader of a worldwide network,
SEMAT, which has the mission to revolutionize software
development based on a kernel of software engineering. The
kernel has been realized as a formal standard called Essence,
which is the key idea described in this article.

Roly Stimson is a principal consultant with IJI (Ivar Jacobson
International) with more than 30 years’ experience in applying
software methods to complex development challenges.
For the past 15 years he has been involved with iterative,
incremental, lean, and agile methods. He has contributed
to the development of IJI’s kernel-based EssUP practices,
SEMAT’s OMG Essence standard, and IJI’s Essence-based Agile
Essentials and Agile at Scale practices.
Copyright © 2018 held by owner/author. Publication rights licensed to ACM.

27 of 27

