
46 COMMUNICATIONS OF THE ACM | NOVEMBER 2017 | VOL. 60 | NO. 11

practice

The Industrial Internet Consortium predicts the Internet
of Things (IoT) will become the third technological
revolution after the Industrial Revolution and the
Internet Revolution. Its impact across all industries
and businesses can hardly be imagined. Existing
software (business, telecom, aerospace, defense,
among others) will likely be modified or redesigned, and
a huge amount of new software, solving new problems,
will be developed. As a consequence, the software
industry should welcome new and better methods.

This article makes the case that to be a major player
in this space you will need a multitude of methods, not
just a single one. Existing popular approaches

such as Scrum and SAFe (Scaled Agile
Framework) may be part of the future,
but you will also need many new meth-
ods and practices—some of which are
not even known today. Extending a
single method to incorporate all that
is required would result in something
that is way too big and unwieldy. In-
stead, the new Object Management
Group (OMG) standard Essence can
be used to describe modular prac-
tices that can be composed together
to form a multitude of methods, not
only to provide for all of today’s needs,
but also to be prepared for whatever
the future may bring.

The software world is continu-
ously innovating and opening up new
areas of opportunity and challenge.
A decade ago developers were busy
with trends such as service-oriented
architecture and product-line archi-
tecture—still very much around, but
now a commoditized part of a larger
system-of-systems landscape, and also
extended to cloud computing with big
data and mobile applications. New
software development approaches
have accompanied these new trends,
most of them being agile in different
flavors and size: Scrum, Kanban, DAD
(Disciplined Agile Delivery), SAFe,
LeSS (Large-scale Scrum), and SPS
(Scaled Professional Scrum) being
among these approaches.

These trends have impacted the
software industry in many different
ways—producing more pervasive and
powerful technology-based products,
for example. None of them, however,
has had a truly transformational or
radically disruptive impact.

The Industrial Revolution in the
19th century moved us from essentially
building things as a craft to manufac-
turing. The Internet Revolution at the
end of the 20th century was another such
transformation of the world or, as Bill
Gates said in 1999, “A fundamental new
rule for business is that the Internet
changes everything.” The Internet has
driven the need for faster turnaround
time with less precise requirements—
hence, sparking the trend toward light-

Is There
a Single
Method for
the Internet
of Things?

DOI:10.1145/3106637

 Article development led by
queue.acm.org

Essence can keep software development
for the IoT from becoming unwieldy.

BY IVAR JACOBSON, IAN SPENCE, AND PAN-WEI NG

http://dx.doi.org/10.1145/3106637

NOVEMBER 2017 | VOL. 60 | NO. 11 | COMMUNICATIONS OF THE ACM 47

I
M

A
G

E
 B

Y
 C

O
N

C
E

P
T

 C
A

F
E

/S
H

U
T

T
E

R
S

T
O

C
K

weight, empirical, and iterative meth-
ods. It has also driven the rise of social
networking, which places the Internet
at the heart of everyone’s life.

Now the Industrial Internet Consor-
tium3 claims that the IoT, building on
the cloud, mobile Internet, big data,
and so on, is a third such fundamental
transformation. The Industrial Inter-
net Consortium was founded in March
2014 by ATT, Cisco, General Electric,
IBM, and Intel to remove roadblocks
to widespread adoption of the IoT. Its
mission is “to accelerate growth of the
Industrial Internet by coordinating
ecosystem initiatives to connect and
integrate objects with people, process-
es and data using common architec-
tures, interoperability and open stan-
dards that lead to transformational
business outcomes.”

The IoT touches everything. What
is it then about the IoT that will dra-
matically change the business model
for all industries? Here is an exam-
ple: Traditionally, a company sells a
product and, as long as all goes well,

doesn’t know what happens to it once
it has left the factory gate. By connect-
ing the product via sensors to the IoT,
the manufacturer can fundamentally
change its value proposition. Instead
of selling only assets, the manufac-
turer can sell services, including the
assets, which enables it to build long-
term relationships with its custom-
ers. For example, suppliers of aircraft
engines can offer their products as
a service (the fee based on the num-
ber of flying hours). The effect is that
the supplier is now highly motivated
to keep the machines running, since
otherwise it will lose revenue, and the
airline can increase its revenue since
it will have reduced downtime. There
are many similar examples from both
government and industry. Basically,
every industry will be affected, includ-
ing banking, insurance, telecoms, air-
lines, and defense.

As voiced by Alex Sinclair, CTO of
the GSMA: “We believe that with the
right standards and regulation in
place it will have a fundamental im-

pact on the way we live and work, re-
ducing waste and inefficiencies and
delivering major social and environ-
mental benefits in security, health
care, transportation and logistics,
education and energy, amongst many
other sectors of the economy.”13 The
IoT will eventually reach all areas
where humans are providing prod-
ucts or services, both today and in the
future. Moreover, it will use all of the
kinds of systems in use today: com-
munication, mobile, distributed, big
data, cloud computing, among oth-
ers, and it will drive new technologies
not yet seen.

To be successful, companies will
need to be able to respond quickly to
the changing demands of the network
while maintaining appropriate levels of
engineering discipline, particularly for
the cloud-based services upon which
the distributed devices will depend.
Moreover, the space to be addressed
covers all levels of complexity—from
very simple software running on basic
sensors and other simple devices to

48 COMMUNICATIONS OF THE ACM | NOVEMBER 2017 | VOL. 60 | NO. 11

practice

(AIA). The intention is that the PD
practice should be used to conduct
project self-assessments, compare
different IoT options, and select the
solution architecture and technolo-
gies to be used in a project. The AIA
practice is then used to identify the
devices, gateways, and services, and
their responsibilities for an enter-
prise solution. Ignite provides a set
of technology patterns (such as ma-
chine-to-machine connectivity, and
sensor networks, among other).

The benefit of Ignite is that it is
based on real-world experience, captur-
ing this experience and best practice in
a well-thought-out and comprehen-
sive methodology. Naturally, the first
thought of the authors of the method-
ology was not so much about the mod-
ularity of the practices described but
about the completeness and relevance
of the method as a whole.

The IoT Methodology. In compari-
son, the IoT Methodology2 is a light-
weight method highly inspired by lean
startup12 and design thinking.1 It in-
volves the following iterative steps:

1. Co-create. Communicate with end
users and stakeholders to identify pain
problem areas in a nontechnical way.

2. Ideate. Simplify discussions to com-
municate requirements to designers,
implementers, and project managers.

3. Question and answer. Trans-
late soft concepts into hard require-
ments, analyze solutions, and brain-
storm options.

4. Map IoT OSI (Open Systems Inter-
connection). Map requirements to
a valid architecture, infrastructure,
and business frameworks, similar to
the layered approach used in the ISO/
OSI model.

5. Prototype. Use standardized tool-
kits to build prototypes and iterate to-
ward minimal viable products.

6. Deploy continuously to close the
feedback loop and improve the products.

Like Ignite, this seems to be a very
generic method at the high level.
What’s so special about IoT Method-
ology is its use of an IoT Canvas and
an IoT OSI reference architecture.
The IoT Canvas is an adaptation of
the business model/lean canvas used
in brainstorming sessions to validate
minimal viable product requirements
for IoT projects. The IoT OSI refer-
ence model is an adaptation of the

the high-performance, highly reliable,
highly governed, secure, resilient, scal-
able systems needed to process, ana-
lyze, and respond to the vast amounts
of data they produce, and everything
in between. Not only that, the rate of
change and the need for innovation
will never have been higher.

The IoT Needs Everything
The IoT does not lack methods. Re-
searching the space shows clearly,
and not surprisingly, that there is
not a one-size-fits-all approach. In-
stead, methods for waterfall and Ag-
ile, methods for small applications
(apps) and for complex systems of
systems, and methods for systems
engineering (that is, for systems with
hardware and software integrated)
are all still needed. What is really
new is that a larger vendor needs all
this at the same time and with com-
pressed time scales, which increases
complexity significantly. Thus, for
larger vendors a multitude of meth-
ods are needed. A smaller vendor
needs a more specific and focused
approach, but one that can grow as
new products evolve and new prob-
lems emerge. Thus, methods such as
Rational Unified Process (RUP) and
SAFe, and practices such as Scrum,
user stories, and use cases are all be-
ing applied. As always with any new
trend, new branded methods are
born. Literature regarding methods
for the IoT is extremely sparse at the
time of this writing. We have found
two methods within the domain: Ig-
nite13 and the IoT Methodology.2

The Ignite IoT Methodology. Ig-
nite is an enterprise methodology for
a major player in the IoT. It is a “big
method” covering all aspects of de-
veloping for the IoT. It has two major
practice areas. (In this article, practice
is defined as a repeatable approach
to doing something with a specific
purpose in mind.9 Practices are the
things that practitioners actually do.)
These areas are strategy execution and
solution delivery. Strategy execution is
about agreeing what to build (that is,
the solution) and involves the prac-
tices of opportunity identification,
opportunity management, and initia-
tion. Solution delivery is about deliv-
ering the solution to users, and it has
a life cycle consisting of planning,
building, and running (that is, oper-
ating the solution). Planning involves
project initiation, whereas building
and running are carried out through
parallel project workstreams.

Project initiation is a set of prac-
tices that results in a number of dif-
ferent artifacts, including solution
sketches, a milestone plan, user inter-
face mockups, and software architec-
ture. Project workstreams consist of a
complementary set of practices (called
workstreams): project management,
cross-cutting, solution infrastructure
and operations, back-end services,
communication services, on-asset
components, and asset preparation.

At a high level, these might seem to
all be very general practices, but em-
bedded within are two domain-specif-
ic practices: project dimensions (PD)
and asset-integration architecture

Figure 1. An abundance of practices.

Use-Cases
for Service

Def’n

Scrum-of
-Scrums

Unified
Process
Lifecycle

Model-
Driven
Arch

•••

•••

•••

•••

User
Stories

Use-Case
Essentials

Scrum
Essentials

Iterative
Essentials

Comp’s
for

Re-Use

Component
Essentials

Architecture
Essentials

PSP
Process

Essentials
QA

Essentials
Agile

Modeling
Team

Essentials

Comp’s
for

.Net

Test-Driven
Develop’t

Measurem’t
Essentials

Essential
UML

Org
Process

Imp

Practice
Harvesting

Virtual
Team

Distributed
Team

NOVEMBER 2017 | VOL. 60 | NO. 11 | COMMUNICATIONS OF THE ACM 49

practice

seven-layer ISO/OSI reference model
for use with IoT solutions. This IoT
OSI reference model consists of five
layers, with endpoints at the bottom,
connectivity, middleware, IoT ser-
vices, and, finally, applications at the
top. Stakeholders and developers use
the IoT Canvas and IoT OSI reference
model to co-create and co-evolve a so-
lution definition before prototyping.

The IoT Methodology has taken ag-
ile thinking as a starting point but is
also a monolithic method.

New Practices Are Needed
It is clear from these methods, and
our own experience handling emerg-
ing technologies, that new domain-
specific practices will be needed to
handle the very nature of the IoT—
particularly practices to handle
these concerns:

 ˲ Distributed. These systems are
typically far more distributed than
most other software systems. Experi-
ence from the development of telecom-
munication systems will come into
play: new failure modes (due to com-
munications), reliability engineering,
redundant systems development, and
so on.

 ˲ Mobile. Again telecommunica-
tion vendors have practices to develop
mobile systems, which are applicable.
For example, these systems have to
degrade gracefully, security is critical,
and they must be robust.

 ˲ Human out-of-the-loop. The whole
idea of the IoT is to sense/analyze/acti-
vate without a human in the loop—for
example, self-driving cars, automat-
ed trading systems, and population
health integration systems. There may
be practices to be designed here,
around reliability, failure manage-
ment/failover, and exception condi-
tion management.

What isn’t needed are new manage-
ment practices.

Both Ignite and IoT Methodology
are monolithic methods that reuse
many existing generic practices, com-
bining these with new innovative prac-
tices specifically for the IoT—sadly, in
a way that makes the new practices
difficult to reuse and share. This issue
can be easily fixed, however, by taking
them to the next level by essentializ-
ing them and freeing their practices.
This means capturing the essence

of a practice, which consists of the
things to work with, things to do, and
competencies and patterns to provide
minimal explicit guidance to apply
the practice effectively. This does not
just make the practices more acces-
sible, but it also makes them easier to
learn, change, and use for teams that
adopt them. Later, we look at how one
of them—the Ignite Methodology—
could be essentialized.

The IoT Needs Essence
As discussed previously, the IoT re-
quires many methods and practices,
some of them specific to the domain
and others that are generally accepted
good software development practices.
For example, they need to deal with
specific problems of distribution and
mobility, yet at the same time they
must be grounded in sound architec-
ture practices.

Essence and practices. The soft-
ware development world has already
identified and described hundreds
of different practices, some of which
are shown in Figure 1. Those shaded
in green are selected for an IoT team.
In an ideal world teams would be able
to select the set of practices they need
to address their current situation and
easily assemble them into a method.
For example, a team building software
for the IoT with a high level of engi-
neering complexity and a high rate
of change may choose to base their
method on the practices highlighted
in green using Use Case and Archi-
tectural Essentials to provide the re-
quired engineering rigor, and Scrum
and Agile Modeling to cope with the
high rates of change.

The problem is these practices
come from different sources and do
not share the common ground needed
to allow them to be readily composed
into an effective method. This isn’t a
problem unique to the IoT; it is a prob-
lem that has been plaguing the soft-
ware industry since its inception and
one that gets worse with every advance
in technology.

How can teams be empowered to
own and control their methods while
providing them with the guidance
they need to be successful, and reflect-
ing the owning organization’s need
for governance and compliance? How
can teams benefit from the growing

Essence provides
a common
framework for
describing all
practices and then
composing them
into many methods.

50 COMMUNICATIONS OF THE ACM | NOVEMBER 2017 | VOL. 60 | NO. 11

practice

Composing practices into methods.
In the past, different methods have pri-
marily been described as isolated, con-
ceptual islands. Every method is basi-
cally a unique phenomenon, described
in its own language and vocabulary and
not standing on any widely accepted
common ground. Any method, howev-
er, may be considered to be composed
from a number of practices.

For example, the agile method
of extreme programming (XP) is
described as having 12 practices,
including pair programming, test-
driven development, and continu-
ous integration. Scrum, on the other
hand, introduces practices such as
maintaining a backlog, daily scrums,
and sprints. Scrum is not really a com-
plete method, though; it is a compos-
ite practice built from a number of
other practices designed to work to-
gether. Scrum can itself be composed
with other practices from, say, XP,
to form the method used by an agile
team. This composition is typically
done tacitly, as Scrum and XP are not
provided in a format that allows them
to be explicitly composed.

As discussed previously, Essence
provides a framework and language for
describing and composing practices.
This framework provides a practice ar-
chitecture where, as shown in Figure
2, both generic and domain-specific
practices are described and assembled
on top of the Essence kernel.

Now individual practices can be de-
scribed using Essence. A practice can
be expressed by extending the kernel
with practice-specific elements, by
describing the activities used to prog-
ress the work and the work products
produced, and by describing the spe-
cific competencies needed to carry out
these activities.

Liberating practices in this way is
very powerful. Once practices are codi-
fied in Essence, teams can take owner-
ship of their way of working and start to
assemble their own methods. This can
start with even a simple library of prac-
tices, as shown in Figure 3.

This capturing and sharing of prac-
tices, both generic and domain-specif-
ic, in a way that lets them be applied
alongside popular management prac-
tices (agile or otherwise), provides the
raw materials that teams need to com-
pose their own ways of working.

number of proven practices while con-
tinuing to innovate and rise to the new
challenges that they face every day?
These are issues that particularly affect
companies moving into the IoT, as they
will need a variety of methods.

What is needed is some concrete
common ground that the practices
can share, providing both a shared vo-
cabulary for practice definition and a
framework for the assembly and anal-
ysis of methods.

This will allow organizations to
prepare a library of practices suitable
for their industry/domain—practices
that teams can easily share, adapt,
and plug and play to create the inno-
vative ways of working that they need
to excel and improve.

This common ground has already
been prepared in the form of the Es-
sence kernel, part of the new OMG

standard Essence,9 which provides a
foundation that allows teams to share
and free the practices from the shack-
les of monolithic methods.

Essence provides the following:
 ˲ A kernel of elements that estab-

lishes a common ground for carrying
out software engineering endeavors
and assembling methods

 ˲ A simple, easy-to-understand, vi-
sual, intuitive language for describ-
ing practices that can be used both to
represent the kernel and to describe
practices and methods in terms of
the kernel

By combining these capabilities, Es-
sence provides a common framework
for describing all practices and then
composing them into many methods.

The power of Essence in address-
ing the method complexity inherent in
developing software for the IoT comes
from its ability to enable the composi-
tion of practices into methods; help
clearly define life cycles and check-
points, enabling practice-independent
governance; and support the creation
of practice libraries from which prac-
tices can be selected to be composed
into methods.

Let’s now look at each of these in
more detail.

Figure 2. The essence practice architecture.

Domain-Specific Practices

Generic Practices

Essence Kernel: Method Agnostic

Figure 3. Three teams sharing a simple practice library.

Use Case

Kernel Architecture Iterative Test Driven
Development

TDD

User Story

Component

Shared Practice Library

Scrum Kanban

Use
Case KernelArchitecture

Component

Team A

Use Case

Team B

Kanban
Kernel

User
Story

Component

Team C

Scrum
Test Driven

Development
Kernel

TDD

Iterative

NOVEMBER 2017 | VOL. 60 | NO. 11 | COMMUNICATIONS OF THE ACM 51

practice

Bringing a set of practices into this
common system also allows gaps and
overlaps to be more easily identified.
The gaps can then be filled with ad-
ditional practices and the overlaps re-
solved by connecting the overlapping
practices together appropriately.

Governance and compliance. The
Essence kernel allows you to define
life cycles easily in a practice-inde-
pendent way. Having a selection of
different life cycles is incredibly use-
ful when tackling a domain as com-
plex as the IoT—particularly when
the life cycles can be combined with
whichever set of practices the team
wants to use, ensuring that appro-
priate governance is applied without
compromising the other aspects of
the team’s way of working.

Using the Essence kernel makes
it very easy to assemble a number of
life cycles, each built using the same
building blocks but addressing a dif-
ferent context and containing its own
contextualized checkpoints. For ex-
ample, Munich Re11 defined a family
of life cycles, each addressing a differ-
ent context:

 ˲ Exploratory: A lightweight agile de-
velopment life cycle for experiments,
proof of concept, and small creative
endeavors

 ˲ Feature growth: A rigorous engi-
neering life cycle to support rapid fea-
ture growth with a strong architectural
foundation

 ˲ Maintenance and small enhance-
ments: A lightweight life cycle to enable
the continuous flow of small en-
hancements and bug fixes for a
fixed, funded period of time (typi-
cally a year)

 ˲ Support: A support-focused life
cycle to aid in the transition be-
tween the development and support
organizations

The ability to capture checkpoints
and life cycles in a practice-indepen-
dent way is incredibly powerful. It lib-
erates the practices, allowing them
to be used where appropriate and not
constraining them to any predefined
type or style of development. It also
makes it possible to address the entire
IoT methods space with a minimal, ex-
tensible, evolving set of practices, and
allows teams to get the help they need
without compromising their agility or
engineering rigor.

Note that Essence is generic enough
to support a waterfall life cycle, as well
as agile approaches.

Building a practice library. It is easy
to see how the use of Essence would
readily allow the assembly of a com-
prehensive practice library contain-
ing all the practices needed for a par-
ticular domain in a way that empowers
teams to select just the practices they
need to build their methods. Over the
past few years, working in many ar-
eas of software development, includ-
ing embedded systems, financial sys-
tems, telecommunications, modems,
and many other areas affected by the
IoT, Ivar Jacobson International (IJI;
https://practicelibrary.ivarjacobson.com/
start has built an Essence-based prac-
tice library). Its library caters to both
the craft and engineering ends of the
development spectrum.

The practice library is constantly
evolving as more and more practices
are captured in the Essence language.
At press time, IJI has essentialized
close to 30 practices, including:

 ˲ Agile essentials, such as daily
stand-ups, product ownership, and ag-
ile retrospectives,

 ˲ Common agile practices such as
Scrum, user stories, and continuous flow,

 ˲ Proven architectural practices
such as Use-Case 2.0, architectural es-
sentials, and component-based devel-
opment, and

 ˲ Life cycles such as the ones defined
by Munich Re, discussed earlier.

Parallel to these efforts, existing
methods such as dynamic systems de-
velopment method (DSDM) and the
Unified Process are being essential-
ized.8,10 An essentialized method is
first structured in terms of its inher-
ited practices, and then each practice
is essentialized without changing its
original idea.

All of these practices are built on top
of the kernel and can be assembled to
prime the pump for the methods that
your teams will use. For example, or-
ganizations have used these practices
to create lightweight agile methods,
robust software engineering methods,
pull-based flow methods, and flexible
method families. They have been used
to create both agile and waterfall meth-
ods that share many of the same prac-
tices but apply them with a very differ-
ent emphasis.

What is powerful here is that these
methods all share the same founda-
tion and can adapt to changing cir-
cumstances by dropping and adding
practices. The methods can also share
practices, helping the teams—and the
software they produce—to align and
collaborate with one another.

To make the practices accessible
and easy to learn, they are all available
in card and electronic formats. Easy-to-
use tools are available for practice and
card creation, for method composi-
tion and publication, and for practice
exchange and community building.
These tools make it easy to extend ex-

The new Object Management Group (OMG) standard Essence9 is designed to support
organizations and communities in becoming learning organizations with empowered
teams that own their own ways of working and share their practices.

In addition to liberating the practices by enabling them to play well together,
Essence does the following:

 ˲ Makes methods significantly lighter by focusing on the essentials.
 ˲ Helps teams measure progress and health in a method-independent way.
 ˲ Allows organizations to build a library of practices from which teams can select the

ones needed for a particular solution (some teams need a “big” method, while others
need only a small one).

 ˲ Helps organizations build “forever” learning organizations.
Essence provides a foundation for software engineering methods. This foundation

helps in two ways: enables teams to understand and visualize the progress and health
of their endeavors, regardless of their ways of working; and, allows teams to easily
share, adapt, and plug and play their practices to create the innovative ways of working
that they need to excel and continuously improve.6,7

It guides developers in achieving measurable results and reusing their knowledge in
systematic ways.

It helps executives lead programs and projects in balanced ways, without more
governance than necessary, and develop learning organizations.

Introducing Essence

52 COMMUNICATIONS OF THE ACM | NOVEMBER 2017 | VOL. 60 | NO. 11

practice

plications, with their high distribution
and ubiquity, require serious attention
to architecture.

At the kernel layer, Essence provides
guidelines for working with the soft-
ware system. IJI’s generic library has a
practice for working with architecture,
including guidelines for creating a
sound architecture description (a work
product) in an agile and lightweight
manner. The Ignite method recom-
mends using AIA as a way to describe
architecture, and IoT Methodology
recommends using its IoT OSI model.
An application that uses EPC and REST
would have technology specifics about
how to name products and connec-
tions and so on.

Let’s dive into the practices identi-
fied in Figure 4. The Essence language
specifies a number of constructs. For
brevity, this article illustrates only al-
phas and work product. An alpha is “an
essential element that is relevant to an
assessment of the progress and health
of a software engineering endeavor.”9
The alphas provide descriptions of the
kinds of things that a team will man-
age, produce, and use in the process of
developing, maintaining, and support-
ing software and, as such, are relevant
to assessing the progress and health of
a software endeavor. “A work product is
an artifact of value and relevance for a
software engineering endeavor. A work
product may be a document or a piece
of software.”3 Practices are a kind of
package consisting of these elements.

The Essence kernel, which stands
at the bottom of Figure 4, is made up
of a number of elements. The figure
specifically shows the Software Sys-
tem alpha. The Essence kernel does
not have an explicit notion of archi-
tecture because in simple develop-
ment, this is left for teams to define.
For more sophisticated development,
the architecture practice fills the gap
by providing explicit guidance on cre-
ating an intentional architecture. The
architecture practice introduces an
Architecture alpha that is described
by an architecture description work
product. The Architecture alpha pro-
vides guidance on how to determine
architecture goals and how to identify
and validate architecture scenarios.

The two domain-specific practic-
es—namely, AIA practice and IoT OSI
practice—provide specializations on

isting practices to meet your needs and
local standards, add your own prac-
tices, define practice-independent life
cycles, and build your own frameworks
and methods.

This allows you to leverage not just
the industry best practice captured in
the IJI practices, but also your own best
practices, be they technical, financial,
motivational, or managerial.

Building a Practice
Library for the IoT
Examining the practices found in Ignite
helps illustrate how to add domain-spe-
cific practices to a practice library.

Ignite describes a number of IoT-
specific practices, including the AIA
practice discussed earlier. Today, the
generic practices in Ignite are not de-
scribed in any detail, a gap that can
easily be addressed by reusing the
generic practices available in the IJI
practice library.

Essentializing Ignite in this way
helps distinguish the IoT-specific prac-
tices in a way that allows them to be ad-
opted separately and applied alongside
whatever generic practices the team or
commissioning organization deems to
be the most appropriate.

New domain-specific practices. By
their very nature, the practices in the
IJI practice library are very generic
and applicable to many software-de-
velopment domains. These generic
practices are useful for many kinds of
software, including for the Internet
of Things.

The specific practices from Ignite
and IoT Methodology are useful do-
main-specific practices that help ad-
dress specific challenges for IoT ap-
plications. In addition, practitioners
would have to work with specific tech-
nologies such as EPC (Electronic Prod-
uct Code) to identify smart objects over
an RFID network communicating with
REST (representational state transfer)
interfaces.5 Thus, there would be other
domain-specific practices to use EPC
and REST correctly.

Let’s take a peek at how domain-spe-
cific practices are added to the practice
architecture. A method has many as-
pects, such as team collaboration, how
to manage requirements, architecture,
and so on. In the discussion to follow,
as shown in Figure 4, the focus is on
architecture aspects because IoT ap-

The IoT will
eventually reach
all areas where
humans are
providing products
or services,
both today and
in the future.

NOVEMBER 2017 | VOL. 60 | NO. 11 | COMMUNICATIONS OF THE ACM 53

practice

how an IoT application architecture is
described. The way teams work on an
IoT architecture is similar to the way
they work on other kinds of architec-
tures. Thus, they do not introduce a
new Architecture alpha but reuse the
Architecture alpha and description
from the generic architecture prac-
tice. There are specific considerations
peculiar to IoT applications, however.
Hence, each of these domain-specific
practices introduces a pattern for de-
scribing an IoT application. A pattern
provides domain/technology-specific
stereotypes to model the IoT applica-
tion. In Unified Modeling Language
(UML) speak, this corresponds to a
UML profile.4 UML profiles are a com-
mon approach to describe domain-
specific architectures, and IoT is one
such domain. The AIA practice intro-
duces an AIA pattern for the architec-
ture description, whereas the IoT OSI
practice introduces an IoT OSI pattern.
At the very top is a technology-specific
architecture practice for EPC/REST-
based IoT applications. This contains a
specific pattern for EPC/REST.5

The layering of practices helps
practitioners understand what is
truly different when working with
IoT-based applications, as opposed
to a more general application. Under-
standing this difference helps practi-
tioners quickly pinpoint the specifics
they need to be aware of and, hence,

learn a domain quickly. This practice
separation is in contrast to monolithic
methods where salient aspects of such
methods often drown in the sea of ge-
neric information. It also helps prac-
titioners differentiate methods—for
example, Ignite and IoT Methodol-
ogy—from the way they work with ar-
chitecture and to understand if they
are truly different. Practice separation
also helps practitioners pick the best
parts from different methods, pro-
vided they have been decomposed,
as shown in Figure 4. This mix-and-
match approach helps teams become
innovative with methods, as well as
the solutions they produce.

Thus, architecture is one area that
needs special attention when building
IoT applications. Security and privacy
also need special consideration. The
IoT opens the world to new ideas and
use cases, and, as such, product idea
generation and formulation also need
special considerations. Each of these
areas require generic practices and
domain-specific practices.

Welcome to the Future
The IoT promises a new dawn for all
sorts of industries, fundamentally
changing the basics of everyday life.
Let’s make sure our software-engi-
neering practices do not get left be-
hind. Let’s stop producing inflexible,
monolithic methods that are not easy

to adopt. Instead, the focus should be
on essentialized practices that provide
an incremental and safe path for teams
and organizations to evolve and grow
their ways of working.

By using Essence as the foundation
for a new practice library, we can lib-
erate the practices and provide devel-
opment teams with the guidance they
need to innovate, improvise, and excel.
We can avoid the traps of the past and
enable software-engineering methods
to evolve at Internet speeds while build-
ing on established, proven practices.

References
1. Brown, T. Design thinking. Harvard Business Review

86, 6 (2008), 84.
2. Collins, T. A methodology for building the Internet of

Things; http://www.iotmethodology.com/
3. Evans, P.C., Annunziata, M. Industrial Internet:

Pushing the boundaries of minds and machines.
GE, 2012; www.ge.com/docs/chapters/Industrial_
Internet.pdf.

4. Fontoura, M., Pree, W., Rumpe, B. The UML Profile for
Framework Architectures. Addison-Wesley Longman
Publishing, 2000.

5. Guinard, D., Mueller, M., Pasquier-Rocha, J. Giving
RFID a REST: Building a Web-enabled EPCIS.
Internet of Things. IEEE, 2010, 1–8.

6. Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I.,
Lidman, S. The Essence of software engineering: The
SEMAT kernel. Commun. ACM 55, 12 (Dec. 2012);
and acmqueue 10, 10; http://queue.acm.org/detail.
cfm?id=2389616.

7. Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I.,
Lidman, S. The Essence of Software Engineering:
Applying the SEMAT Kernel. Addison-Wesley, 2013.

8. Jacobson, I., Ng, P.-W., Spence, I. The Essential
Unified Process. Dr. Dobb’s Journal (Aug. 2006); http://
www.drdobbs.com/architecture-and-design/the-
essential-unified-process/191601687.

9. Object Management Group. Essence—Kernel and
language for software engineering methods, 2014;
http://www.omg.org/spec/Essence/.

10. Page, V., Stimson, R. Essentializing the DSDM Agile
Project Framework. Agile Methods Conference,
London, 2016. Ivar Jacobson International; https://
www.ivarjacobson.com/sites/default/files/field_iji_file/
article/essentializingdsdm_1.pdf.

11. Perkens-Golomb, B., Folkjaer, P., Rauch, F., Spence,
I. Ending method wars: The successful utilization of
Essence at Munich Re. Ivar Jacobson International,
2015; https://www.ivarjacobson.com/sites/default/
files/field_iji_file/article/essence_munichre_0.pdf.

12. Ries, E. The Lean Startup: How Today’s Entrepreneurs
Use Continuous Innovation to Create Radically
Successful Businesses. Random House, 2011.

13. Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.
Enterprise IoT: Strategies and Best Practices for
Connected Products and Services. O’Reilly, 2015.

Ivar Jacobson, chair of Ivar Jacobson International, is
a father of components and component architecture, use
cases, the Unified Modeling Language, and the Rational
Unified Process. He has contributed to modern business
modeling and aspect-oriented software development.

Ian Spence is CTO at Ivar Jacobson International and
the team leader for the development of the SEMAT kernel.
An experienced coach, he has introduced hundreds of
projects to iterative and agile practices.

Pan-Wei Ng coaches large-scale systems development
involving many millions of lines of code and hundreds
of people per release, helping them transition to a lean
and agile way of working, not forgetting to improve their
code and architecture and to test through use cases
and aspects.

Copyright held by ownes/authors.
Publication rights licensed to ACM. $15.00.

Figure 4. Architecture practices in Ignite and IoT Methodology.

(IoT) Domain
Specific Practices EPC/REST

based IoT

EPC/
REST
Pattern

Architecture
Description

Architecture

Software System

IoT OSI
Pattern

AIA
Pattern

Architecture
Practice

(Architecture Views)

Kernel

(extends)(extends) (extends)

(extends)(extends) (extends)

1

1

Asset-Integration-
Architecture (AIA)

IoT OSI
Model

Generic
Practices

Essence
Kernel

Layer Practices Alphas

Work
Products

