

SEMAT and Essence:
The Why’s, What’s and How’s
to See the Difference

Ivar Jacobson
Paul E. McMahon
Roland Racko

24
QUESTIONS

Over the years our collective experience has revealed
many questions on the SEMAT and Essence initiative.
To bring clarity of the initiative to our readers, we
have answered 24 of the most common questions.

When you understand these questions and answers, you will better understand
the impact and utility of Essence. The questions and answers will give you a
fresh perspective on all software development methodologies, whether they are
traditional or Agile such as Scrum, Kanban, SAFe, DAD − a perspective useful
for the whole software development community − industry (developers and
executives) and academics (teachers and researchers). In what follows Roland asks
the 24 questions and Paul and Ivar provide the answers. Our goal is to help you
understand how SEMAT and Essence can:

• Guide developers in achieving measurable results and to reuse their expertise

in a systematic way.

• Help executives to lead programs and projects in a balanced way without
applying more governance than necessary and to develop organizations,
which routinely learn from that experience.

• Allow teachers to teach software engineering in a more logical and systematic
way.

• Enable researchers to use Essence as a definition of the problem they want to
understand and assist their efforts to develop a General Theory of Software
Engineering.

We have organized the interview results into these sections:

1. The common grounds of Essence
2. Essence kernel
3. Advantages of Checklists
4. On being a standard
5. SEMAT vs SWEBOK
6. Essence kernel supporting existing practices
7. Betterment of existing methods powered by Essence
8. Theory
9. Myth and Reality

Ivar: There are 100,000’s of methods in the world,
some of which are described and some of these
described are famous such as RUP, Scrum, XP, Kanban.
Essence is not one of these. Essence is just what is
common for all these other methods – it is a common
ground. It includes things that every method has. It has
some resemblance to a method, but to really become a
method you need to add things on top of it.

All of these methods mentioned above have something in common. They are all
about developing software. When people develop software, they always have a
number of things; ingredients that are prevalent in every software endeavor. For
instance, their work always results in a software system. There is always a team.
They always have a way of working. The way of working doesn’t need to be formally
documented in a company manual. If it’s a real team they will nevertheless have a
way of working.

They always do things; they always come up with what the system is going to do –
we can call it requirements. They always implement the requirements, for instance
by writing code. They always test. There are many things they always do. If you’re
really careful and identify things that are universal for all software development
endeavors, you can come up with a common ground, and that’s what Essence is.
Essence is something we always do, we always have, and we always work with when
we develop software. Thus we can say that Essence includes elements universal to
all software development methods. That makes Essence agnostic to any specific
method.

In contrast to Essence, a method includes things that are specific and that
distinguishes it from other methods. These specific things come with practices
added using Essence as a foundation. For instance, there are many ways for users
to write requirements. You could just write the requirements as a functional
specification. You could use structured analysis. Or you could do use cases or
user stories. There are many different ways of doing requirements. The specific
way a method is captured in a practice, which would then be described “on top of
Essence.”

1. “Why is Essence
not just another

method?”

1 ON THE COMMON
 GROUNDS OF ESSENCE:

Paul: The common ground provides a
common reference point that can help ensure
essentials are not missed. Essence adds
states and checklists to help assess where we
are and where we need to focus next with
respect to the common ground. These states
and checklists give a common approach to
measurement, which is something we have
never had before and something the software
engineering community clearly needs. The
states and checklists are a key discriminator of
Essence from other software frameworks. They

provide critically important value beyond the common ground itself.

2. “What is the value in
identifying a common

ground if it always
exists?”

3. “How can Essence
become popular (and
generally accepted)

without being seen as just
another fad?”

Paul: Of course, people who just
look at Essence on the surface can
wonder if this is just another new
method of the same type we have
had for the last 20 years. However,
people who prudently study Essence
will understand that this does not
directly compete with existing
methods. Instead, it codifies what
we have been doing for so many
years. It makes it possible to describe
existing and new practices based on
a common ground.

Eventually, to remove this suspicion of fad, we need proof that Essence is for real;
that it really can help organizations perform better at software development. This
is now our focus. However, we need more organizations to use it, and then report
on their results. If organizations are struggling with Essence, we need to openly hear
about those struggles so they can be discussed and resolved.

While on one hand Essence is not new from the perspective that it embodies the
essentials of what has been proven to work on past successful software endeavors,
on the other hand, it is very new. Why? Because in Essence we have introduced
a new construct to allow us to focus on the real outcome of a project, not on
documents or activities, but on results.

This new construct, called alpha, is used to represent the key elements of a practice;
the elements that produce real results and which you want to measure progress and
health during your project. The alphas allow us to separate out the essentials from
specific practices and methods. That separation makes it possible to measure and
assess strengths and weaknesses of any team’s current way of working.

Another new feature is a simple and intuitive human interface way to share the
knowledge and the insights of Essence. We do this by using pictorial cards and
by playing serious games with these cards. We are thus suggesting some new ways
that can help teams coordinate their activities and assess their progress and health.

In many organizations adoption of Essence ideas will mean a culture shift and culture
shifts take time. As just one example, over the last ten years we have seen how
difficult culture shifts can be as organizations have realized they need to become
more agile in the way they develop and deliver software solutions. We do not
believe that organizations should change dramatically the path they are currently
on in order to transform themselves into more agile organizations. Rather we
believe that Essence can help to power their transformation by guiding their teams
especially during the difficult transition stages. This is just one way that Essence can
power whatever your organization is doing today, without radically changing what
is already working for you.

Ivar: Let me add that the risk that Essence will be seen as another fad reduces
with every company that applies it. Several companies have successfully used it,
for instance Red Hat, Fujitsu, and Munich Re to name a few such companies, but
there are others such as large telecommunication vendors, mobile phone operators,
electronic equipment vendors, and manufacturing companies.

Moreover, apart from being able to describe existing and new practices based on a
common ground you can also take an existing method and essentialize it, meaning
capture the essence of that method.

The value of ‘essentialization’ is that people can learn a new practice in a very easy
way, compare it with other practices, compose it to a method (with many proven
practices) and modify/change their method as time goes by. Applying Essence
makes it fundamentally easier to govern the number of methods you have in your
organization so you create an effective learning organization.

Ivar: Of course the logical answer is: no it’s
not. Because if it was, Essence would not be a
common ground. Essence can be used for all kinds
of methods, and of course nowadays, the most
popular methods for new software development
are agile methods. There are things that have to
be done in some sequence, but these things are
usually done within a short period of time – within
an iteration or within a sprint. For instance, testing
includes specifying what to test. In some agile

methods you first write the test cases and let them work as requirements. And then
you test to ensure that you meet these test cases. Thus, some activities are naturally
done in sequence, but the sequences are within a much smaller scope than before,
within an iteration.

Paul: We intentionally chose a
new name because there was no
existing term that represented the
meaning of what alphas are. The
alpha construct is new and didn’t
exist before. Many people, when
they first read about alphas, think
they are just abstract work products,
but that is not what they are.

Alphas, the core dimensions of a
software process, exist whether
there are tangible work products or
not. The alphas are the critical aspects that we need to monitor and progress to
ensure our endeavor is successful. They can be likened to the dashboard in your
car in that they help you see where there may be trouble ahead so you can respond
quickly to avoid that trouble. For example, if you have conflicting requirements
you can’t pass all the checklist items to get to the Requirements Alpha state called
Coherent. You have to attend to the problem first.

4. “Is Essence
kernel inherently
‘waterfallish’?”

2 ON ESSENCE KERNEL:

5. “When I hear this alpha term
my head starts to spin. I don’t get

it. Why didn’t you pick a name
that the software engineering
community intuitively could

understand?”

Paul: We have tried to find a
better word to describe the state
that exists between Requirements
Conceived and Requirements
Coherent. In the Conceived state
we have agreed there is a need for
a new system. In the Coherent state
we have worked through conflicting
requirements and we understand
the priority of the requirements.

However, before you get to
Coherent we believe there is a state
where a shared understanding of

the extent of the solution is achieved. We have called that state Bounded. We
understand this term is misunderstood by some people, but we have not found a
better word to communicate this state. Most importantly, the Bounded state does
not imply that the requirements cannot continue to evolve. Instead, it implies that
there is a shared understanding of the extent of the solution.

Ivar: Yes. Essence is a kernel for software
development endeavors. Thus, Essence
is a specific kernel. There could be other
kernels. For instance, there will be an
extended kernel for systems including
hardware and peopleware – a kernel for
systems engineering. So there could be
other kernels.

What we have seen is the Essence kernel developed for software endeavors can be
easily modified to also work for system engineering. Although Essence is inherently
more generic, we focus on software to make sure the kernel is efficient for software
development.

6. “Looking at the Requirements
alpha and its set of states some
people get the impression that
it is ‘waterfallish’ because of the
bounded state. What do you tell

them?”

7. “Is there a distinction
between what Essence is

and what a kernel is?”

Paul: Of course team members are
stakeholders. This question is a common
question we get, and it is an example of
trying to use the kernel as a way to physically
partition your project. It is a mistake to use
Essence to physically partition your project
because that is not the purpose of Essence.
Essence is a set of critical aspects that help
you monitor and progress your endeavor.
We separated the Team from Stakeholders
because they are both essential to successful

software development. They both need to be monitored and progressed. They
each deserve their own attention because they each have separate potential issues
that can arise and will require action to keep them both healthy.

Paul: We agree that risks are essential
on all software endeavors and we discussed
the potential of including risk in the kernel.
But the trouble we had was trying to decide
where it could go.

Should it be in one of the existing alphas, for
instance? Should it be its own alpha? After
discussion, we decided to keep risk out of
the kernel. By keeping it out of the kernel all the alpha states and checklists can
be used to help decide where risk exists in an endeavor. For example, if you are
having trouble achieving the Requirements Alpha Coherent state because there
are conflicting requirements that you are having trouble solving, then this is an
indication you may have a requirements risk.

8. “Why did you
separate the Team from

Stakeholders? Aren’t team
members stakeholders

too?”

9. “Risks are
essential on all software

endeavors. So why
isn’t risk an alpha?”

Ivar: Checklists are immensely powerful
for many different professionals, even very
well educated such as pilots and surgeons.
Before taking off with a flight the pilots have
to go through checklists for flight controls,
engine, fuel, electrical, etc. The surgeon
has to go through a surgical safety checklist
specified by the World Health Organization
with 19 questions such as ‘has the patient any
known allergies’, ‘has the patient confirmed
his/her identity…’. Introducing the surgical
safety checklist reduced the deaths by surgical

errors by 47%. Thus, simple checklists save lives, why wouldn’t they save software
projects?

Ivar: Historically we have used
checklists to identify progress. The
problem with these checklists has
been that they have usually been
related to the fact that you have
done a particular activity or that
you have written a particular work
product, a document or something
like that. Such checklists are very
easy to cheat and so not really
very useful. The fact that you have
written a document doesn’t mean
the document is valuable.

By having states representing real outcome (e.g. goals), you know you really have
achieved something when you have reached a particular state, not measured in terms
of written documents or performed activities. For example, the Team Collaborating
state cannot be achieved just by listing the names of your team members.

10. “Why do you think
states with checklists are
a good way to measure
progress and health?”

3 ON ADVANTAGES
 OF CHECKLISTS:

11. “Checklists have been around
forever and ever and not given a

value expected. Why do you think
your checklists are better?”

It requires that the team members are communicating in an open and honest way,
and that the team members are focused on their agreed mission. That use of a
quality qualifier rather than a number is actually the key difference. Our checklists
are measuring or identifying that you really have achieved something of value and
not that you have filled in a document template or that you have performed an
activity.

Thus, Essence doesn’t place value on documents at all; it doesn’t care that you have
done some activity. Instead, Essence cares that you have achieved something of
value like executable code that satisfied a need for a stakeholder. Executable code
is a real result that when demonstrated to a stakeholder, they can see what it does to
help them address their need. As another example, the fact that you have written a
requirement specification is not something that we would use to measure progress.
Instead, we ask a different question, such as; have you gotten consensus among the
stakeholders that these are the requirements of the system? This is the value in our
checklists beyond what past frameworks have done.

Ivar: That is really a very
important question. If you go
through a checklist for a particular
state, it’s not necessarily instantly
clear what is meant to achieve a
state. This is actually intentional. If
we tried to make it unambiguous,
we would have to express ourselves
in a formal way and then almost
nobody would understand what
is meant. On the other hand, if we
had no precision at all the checklists
wouldn’t give us any hint of the
meaning and that wouldn’t make
them useful.

Let go back to the Bounded state we
discussed earlier and look at the example checklist item in this state that says, “the
stakeholders have a shared understanding of the extent of the proposed solution.”

Some people might think we need a complete and consistent set of requirements
that are frozen to achieve this state but that is not what is meant by Bounded.

12. “The different checks in
the checklists are ambiguous.

What value does such
checklists give?”

A “shared understanding of the extent” means the stakeholders agree where the
boundaries of the proposed system lie. The team needs to agree that this checklist
item is achieved by discussing it within the context of their own endeavor. This is
one of the reasons we refer to Essence as a “thinking framework.”

Essence strikes a balance and to some extent relies on people’s experience. We
know that within a team, people may have different opinions about the meaning of
a particular checklist item. That results in a discussion, which is extremely valuable.
Eventually the team will decide on how they interpret the checklist item and take
a decision about whether the item has been achieved or not as in the example
referred to previously.

As another example, is there consensus about the requirements? The ambiguous
word there is obviously “consensus”. Does consensus mean 80% of the people like
it or my boss likes it? What is the meaning of “consensus” is partly environmentally
determined. That makes it a useful ambiguity. It makes it a useful ambiguity
because it brings up discussion, which inevitably must be clarifying to the process.
Because of that discussion the team will eventually agree and take a decision about
whether we have achieved what the checklist item implies and whether we have
consensus or not.

Ivar: We now have a standard in place
and we already have achieved the first
set of updates and received approval of
Essence 1.1. When working the changes for
Essence 1.1 we considered many changes.
For example, in the requirements alpha,
there is one state “bounded” that people
have the wrong impression that it means
the requirements cannot change. That is
incorrect. The checklist should indicate
that we have an understanding of where the
boundary of the system is. We considered
changing the name of that state, but decided

after discussion to leave it since we agreed we couldn’t find a better name.

We have a number of things like that we have already identified. Some time ago
there was a definition of “practice” that had been changed in the last round by
people who worked on the finalization task force and that change had not been
reviewed by people who have been working with Essence since the beginning. That
was fixed in Essence 1.1. So there are some things that need to be taken care of
and will continue to be taken care of in future Essence releases. These things can be
dealt with in practical ways as comments to the specification. But they can also be
done while doing the work on 1.2 and follow on releases.

We also now have many people working on potential changes. The ones we have
are not based on mathematics, they are based on practical experience. There
may be some new elements that should belong to the kernel or there may be
elements that we can do something about like combine and so on. Essence is not
a mathematical result, it’s based on experience. So we may come up with some
changes. However, I don’t think the changes will be dramatic, because the kernel,
as it is now, is very similar to what has been used in many custom engagements. So
it’s proven. But that doesn’t mean it cannot be further improved.

13. “How are you going
to guarantee keeping

Essence up to date now
that it has become a

standard?”

4 ON BEING A STANDARD

What today we consider essential in most software development endeavors will, as
we get more and more experience, be too little. So we may want to add something
that we feel we should always have. Or it may be the other way around. We may
find we can simplify. Essence is not natural law. Instead, it’s proven experience.
Nevertheless, we don’t think we will see a lot of changes as time goes by.

Still we need to guarantee to keep Essence up to date, but we also need to make
sure that the changes that we introduce are stable. This is supported by OMG’s
formal process in working with standards. Still OMG works quite fast. We will
probably see a new updated version of Essence within one year.

It’s of course important that the process isn’t so rigid that it doesn’t allow changes
to happen. It’s expected that there will be improvements over time and there is a
process to do that.

Ivar: I think it will happen. There
are different ways of changing. You
can add practices on top of Essence.
You can actually add a “package”
on top of Essence as a change and
in that way you create a new kernel.

There are basically three ways to
change. One is to change Essence
itself. That is something that goes
through a formal process so it
doesn’t happen without a lot of
thought.

Number two is that you add kernel elements in a layer outside the kernel without
changing Essence itself. In a large company, for example, you may want to add
practices that are in addition to the company’s traditional software development
practices, like business engineering. Or perhaps you want to make the kernel useful
for systems of systems or any other kind of special-purpose engineering. You can
add a layer outside which has the new specific elements.

Another way is to add practices on top of the kernel to extend elements that are
not in the kernel.

“..Do you think that people
will be tempted to make

their own version of Essence
in a company and thereby

start a “fork”?”

There is a balance to take here. If you change the kernel in any of these ways, those
changed kernels wouldn’t necessarily be able to serve in the current marketplace
for other people.

We expect that there will be libraries of hundreds of practices that are available
to be used on top of the kernel once it becomes the standard. If you change the
kernel, then the foundation for these practices is changed and so re-usability of
the kernel may be lost. That is the risk a company would take if you do change
the kernel or layers outside the kernel. But that may be something big companies
care to do and that they are not concerned with whether they can get practices
from an existing practice library. I would expect smaller companies to be more
careful because they would really want to get practices from a library and not have
to develop them themselves.

Ivar: SWEBOK stands for software
engineering body of knowledge. And we have
a clear difference between these two initiatives.
SEMAT is looking for the kernel to provide
a foundation for practices; practices defined
on top of the kernel that can be combined
and composed to form your particular way of
working. SWEBOK has a different purpose and
that is to identify practices and specify them.
Both initiatives have the ambition to create a

library of practices. So SEMAT and SWEBOK could work well together. SEMAT
could take practices defined in SWEBOK and define them on top of the kernel.
SEMAT is also about using practices in daily work. So usage is very important in
SEMAT. SWEBOK has nothing similar. There is a good opportunity for the two
initiatives to collaborate and do something that will become stronger for each one
of them.

Both SEMAT and SWEBOK are about ways of working. However, SWEBOK has
no common ground concept similar to what SEMAT has developed. SWEBOK is
describing every practice from the bottom using English. Furthermore SWEBOK
has no support for the actual doing and monitoring in everyday work.

5 ON SEMAT VS SWEBOK

14. “Why isn’t
SEMAT just another

SWEBOK?”

Ivar: It depends on what you mean by
“support for.” On the one hand Essence
absolutely does provide support for iterative
development, and for Scrum and for any
other practice you may be interested in.
For instance, Essence can work with Scrum
by enhancing it. An example of how it can
do this was seen with a group of students
who used both Essence and Scrum as part
of a course at Carnegie-Mellon West. The
students reported that Essence helped them
consider issues that might be a problem,
but they didn’t know might be problems.

When you conduct Sprint Retrospectives without an aid like Essence, the team will
only consider issues that they have absorbed from Scrum or that they are aware
of from their own experience. Essence helped them consider things that could
be problems, but they didn’t know from their own experience. This is part of the
power of Essence.

On the other hand, Essence, being universal, doesn’t have practice-specific support.
For example, it doesn’t contain any guidance that explicitly calls for “iterative
development.” Instead, if you want to do iterative development you will need to
take an iterative development practice from the library of practices and add it on
top of the kernel. Now you would see how it maps to the kernel by using the kernel
alphas, states and checklists in an iterative way. One of the reasons people think
Essence doesn’t support iterative development is because they think all the parts of
a software system have to be in the same state at the same time. This is not true.
Different parts of a software system can be in different states at the same time,
and you can iterate through the same state multiple times with the same part of
your software system if you have defined an iterative practice on top of the kernel.
So Essence absolutely does support iterative development, but it also supports
waterfall development if you choose to define a waterfall practice on top the kernel
that only moves through the states of each alpha one time.

15. “Why doesn’t the
Essence kernel include
support for iterative

development (or
Scrum)?”

6 ON ESSENCE KERNEL
 SUPPORTING EXISTING
 PRACTICES

It is true that we don’t include iterative ideas within the kernel because that would
be method specific. However, you can add practices on top of the kernel to support
Scrum or any other iterative approach.

Today we really don’t know how much software is developed in an iterative or
scrum like fashion. But of the total amount of software that we have and still are
maintaining, I would assume that most software is developed using old methods
that were not iterative.

We want to have a kernel that is agnostic to any particular method, so we cannot
include iterative ideas within the kernel itself. We can add practices on top of the
kernel to support scrum or other iterative approaches.

There is work going on now to compare, for instance, native Scrum as defined by
the fathers of Scrum with the same Scrum, but defined on top of Essence. There are
several significant advantages and values to defining Scrum using the Essence kernel.

Ivar: If you have Essence as a platform
for describing your method, you are sure
that you won’t miss any of the essential
dimensions of software development.

What we have seen is that when people
don’t use Essence, they forget about
essential aspects of their projects. They
may forget about the stakeholders, or
they forget about why they are doing this
endeavor in the first place. For example,
what is the business case? Or what is the
opportunity we are trying to exploit? Or

they may forget about enhancing their way of working. Or they may forget about
keeping the team healthy and growing its capability over time.

7 ON BETTERMENT OF
 EXISTING METHODS
 POWERED BY ESSENCE

16. “Why do you say
that any existing method

becomes a better method if
“powered by Essence?”

Basically with Essence, you are consciously looking at all seven dimensions, the seven
Alpha’s. You won’t forget any of the dimensions, and especially, you don’t only
focus on “getting code to run.”

Even if code is what we want to get eventually, we need to have the right code. You
don’t get the right code if you don’t carefully check what the stakeholders want.
And you don’t get the right code if you don’t have the right team with the right
competencies, and so on.

Paul: We are working
on a practice develop-
ment kit that will provide
guidance in how you do
it, but it is actually quite
simple.

We represent all the el-
ements of the language
on cards. We have cards
for alphas, alpha states,
activities, competencies,
patterns, practices and
so on. You use the ap-
propriate type of cards to

define the parts of your practice that you need. It is important to understand that
there isn’t just one way to represent a practice in Essence.

As an example, one could define Scrum as a practice that includes a collection
of activities with the Sprint Retrospective being one of those activities. As
another approach, one could define the Retrospective as a standalone practice. If
Retrospective was a separate practice, it could be used - actually reused - through
composition when defining the complete Scrum practice and in that way making it
easier to define the Scrum practice. The Retrospective practice could of course also
be reused when defining other practices – alternatives to Scrum.

17. “I think I understand the basic elements
of the kernel language (e.g. alpha, alpha
state, competency, activity space), but
I don’t understand how you put these

elements together in a simple intuitive way
to describe a practice, or to describe a set
of practices as a method. Can you give me

a simple example?”

However, in either case we would select the appropriate types of cards, and place
on the cards key information about retrospectives such as competencies needed,
basic information about how to conduct the retrospective, who should attend a
retrospective, how long it should be and so on. We would also include helpful hints
such as things to watch out for during the retrospective, and completion criteria.

We also should mention that just as with the alpha states, checklists become very
important also when defining a practice. There is the checklist to ensure you are
prepared to conduct the practice, the checklist of things to watch out for while
you are performing the practice, and the checklist to ensure you have completed
the practice.

So in summary, a practice will be tangible as a set of cards. A method in its turn is
then a set of practices, all described on cards. Thankfully we usually only have to
work with one practice at a time so the needed number of cards are not too large
for a developer at any specific point in his software endeavor. Typically the number
of cards required for a single practice is less than 10. For really large practices, for
instance a practice that assists the team all the way from requirements elicitation to
code implementation and acceptance tested software, we have seen up to 20 cards.
Of course, when you have practices that require large numbers of cards there are
tools that allow you to work with electronic cards.

Paul: There are two perspectives to consider when looking at how SEMAT will
help software endeavors; strategic (long range), and tactical (short range).

Looking out on a strategic long-range horizon
there will be libraries of practices where you can
compare, and select practices that fit with your
endeavor needs without constantly reinventing
the same practices. This will help endeavors by
minimizing the upfront preparation time to
tailor processes and get ready to execute an
endeavor and it will lead to better practices and
method design for teams because we will have
shared best practices that now can be reused.

How software professionals can create an Essence practice and contribute it to an
Essence library to share with others is the focus of one of our Essence User guide
working groups. This User Guide will be made available for anyone to download
and use from the SEMAT web site.

18. “How, exactly,
will SEMAT help my

endeavor?”

From a more tactical short-range perspective, Essence can help an endeavor today
by helping teams enhance whatever they are doing today in multiple ways.

First, teams can today use the Essence framework to assess potential gaps that may
exist in their current way of working regardless of the degree to which their way of
working is documented today. An example of how a team can do this is provided in
one of our scenarios in the Essence User Guide.

Teams can also use the Essence framework today to assess where they are and
where they need to focus next to be successful. They can do this at the start of
an endeavor or to help them work through a specific problem they know they are
facing. Examples of how teams can do this are also provided as scenarios.

Regardless of the degree to which an organization decides to formally define their
practices and methods using the Essence framework, they can start using the alpha
state checklists to assess their progress and risks in a more consistent way leading to
improved team communication. This can help teams learn faster, coordinate more
effectively and track progress more consistently.

Paul: When you look closely at the
states that most team’s using Kanban
place on their Kanban board, they focus
primarily on progressing the work. The
work is just one dimension of what it
takes to ensure you have a successful
software endeavor. The Essence Alphas
help you monitor Work, but they
also provide six additional essential
dimensions (Stakeholders, Opportunity,
Requirements, Software System, Team,
and Way of Working) beyond Work that
must be monitored and progressed to
ensure software endeavor success.

19. “How Are Essence’s
States any better than the

States on a Kanban Board?”

Ivar: One of the triggers of SEMAT was a paper
‘Methods Need Theory’ by Bertrand Meyer and
myself. Now SEMAT has a Theory area with quite
a large group of participants who are working on
a General Theory in Software Engineering. It has
organized workshops for three years since 2012 and
published papers from these workshops in ACM
SIGSOFT Software Engineering Notes. We see very
promising results from this area of work.

Ivar: A general theory in software
engineering (GTSE) should, as I can
see it, have a definition worth the
name of what software engineering
is. If you look in the literature you will
find many alternative definitions of the
length 1-10 lines, but these definitions
really don’t help as a base for a theory.
From a theory perspective the Essence
kernel and language work as such a
useful definition. However, Essence
is not just a static definition, it also
includes dynamics for measuring
progress and health, which should
help in giving predictive properties to
the theory.

20. “Where’s the
T in SEMAT”

8 ON THEORY

21. “ In what way does
Essence support building a
general theory in software

engineering?”

Paul: This is a great
question, and we have
many examples in our
User Guide that demon-
strates this. In fact, two
of our scenarios are good
examples. Neither one
depends on a team’s for-
mally defined practices or
method. Both scenarios
demonstrate how Es-
sence can help teams with
their way of working.

In one of our scenarios
a team that is using

Scrum decides to use Essence in an “assessment poker” fashion. Each of the team
members has a set of the Essence Cards. They use the cards to assess where they
are, and where they need to focus next. This scenario shows a team how they can
use Essence as an aid to help them ensure they are doing the right things regardless
of what practices they are currently using or the formality of those practices.

In another scenario the team uses Essence to help with a specific problem they are
facing. Specifically, the team is having trouble with a resistant stakeholder so they
start by looking at the Stakeholder Alpha to figure out where they are and this leads
them to figure out that they need to get a stakeholder representative appointed.
From there the team then gets the new stakeholder representative involved by
interviewing him, and then they discover that he doesn’t see the value of the new
system. This lead them to the Opportunity Alpha and the Value Established state.
What you learn from this scenario is how the Essence kernel helps the team figure
out the root cause of the problem and the appropriate actions that need to be taken
to solve the problem.

You can get more information from the User Guide when it becomes available later
this year, or from a recent Google tech talk given by Ivar Jacobson and Ian Spence at
http://www.ivarjacobson.com/google_presentation/.

22. “I am a developer, and I really don’t
care about formal or even semi-formal

methods, but I do care about my way of
working. Can you show me how Essence
helps my team with our way of working
even if we don’t care about defining our

method?”

Ivar: First, nowadays
what is classified as
agile is everything that
is good about software
development. The term
agile has really lost its value.
How could you not be agile?
However, not all so called
agile practices will give the
values we hope for. Some
we even should stay away
from. Nevertheless, some
are really good. With agile
as with everything else: you
need to select the practices
that fit your project and
that give you what you are
looking for.

Ivar: Software reuse is a
complex area and much can
be said about it. Together with
Martin Griss, I wrote a book
(Software Reuse…), which
discusses the questions you
raise. Briefly, I would like to say
that software reuse is something
you need to architect to get. It
is not something you get for
free. It requires architecting
competencies that have not
been promoted since the
world became agile. However,
architecture practices are on
their way back and software
reuse will once again be a
concern for all IT executives.

9 ON MYTH AND REALITY

23. “There is a common myth among
business owners and practicing project
managers that agile methodology will

reduce software development and
delivery cycle time drastically. Is it so? In
the name of agile, are we giving birth to

fragile software that causes more re-work
and eventual holes in the entire quality

aspect?”

24. “Object orientation and component
based development stood on strong

philosophy of separation of concerns and
compartmentalization of responsibilities.

But, immature learning as well as lack
of fundamentals often leads to poor

conceptualization of code reuse. If code is
not usable in its first instance re-usability is

a far cry. Do you agree? ”

ABOUT THE AUTHORS

Dr. Ivar Jacobson is a father of components and
component architecture, use cases, aspect-oriented software
development, modern business engineering, the Unified Modeling
Language, and the Rational Unified Process. His latest contribution
to the software industry is a formal practice concept that promotes
practices as the ‘first-class citizens’ of software development and
views method (or process) simply as a composition of practices.

Dr. Jacobson is the Founder and Chairman of Ivar Jacobson International. He is also one of
the three founders of the SEMAT community, the mission of which is to refound software
engineering. He is the principal author of seven influential and best-selling books and a large
number of papers, he was awarded the Gustaf Dalén medal (“the little Nobel Prize”), and he is an
honorary doctor at San Martin de Porres University, Peru.

Paul E. McMahon (pemcmahon@acm.org),
is Principal of PEM Systems (www.pemsystems.com) where
he focuses as an independent consultant on providing coaching
to project managers, team leaders and software professionals
in the practical use of lean and agile techniques in constrained
environments (e.g. physically distributed teams, CMMI compliance
requirements, Corporate governance requirements). Before
starting his independent work, Paul spent 23 years working in
the software industry as a software developer, team leader and
manager.

Paul has a Masters Degree in Mathematics and is a Certified Lean Six Sigma Black Belt and
certified Scrum Master. He has taught Software Engineering at Binghamton University, State
University of New York. He has published multiple articles and books on software development
including “15 Fundamentals for Higher Performance in Software Development”, and he is a co-
author of “The Essence of Software Engineering: Applying the SEMAT Kernel”.

Roland Racko is the president of eWyzard Inc.
(www.ewyzard.com) which helps companies grow their
businesses by using the latest in IT online marketing techniques. He
has recently completed a book called “Timing Is Almost Everything.”
This book shows Senior Executives how to implement some of the
many currently important IT technologies, like Essence, in a more
effective way by carefully timing their management directives. The
book also shows executives particularly effective corporate culture
change tactics to smoothly introduce and adopt these technologies,
including Essence, into their company.

The book, to be available in early 2016, may be ordered at www.timingisalmosteverything.com.
Roland has over 40 years experience as an international seminar leader, magazine columnist and IT

About Ivar Jacobson International
IJI is a global services company providing
high quality consulting, coaching and training
solutions for customers seeking the benefits of
enterprise - scale agile software development.

We are passionate about improving the
performance of software development teams,
and maximizing the delivery of business value
through technology.

Whether you are looking to transform a single
project or program or your entire organization
with lean and agile practices, we have solutions
to suit your needs.

www.ivarjacobson.com

Sweden
+46 8 515 10 174
info-se@ivarjacobson.com

United Kingdom
+44 (0)207 953 9784
info-uk@ivarjacobson.com

Asia
+8610 82486030
info-asia@ivarjacobson.com

Americas
+1 703 434 3344
info-usa@ivarjacobson.com

Copyright 2015 Ivar Jacobson International, All Rights Reserved.

