
acmqueue | january-february 2016   94

development

U
se cases have been around for almost 30 years as 
a requirements approach and have been part of 
the inspiration for more-recent techniques such 
as user stories. Now the inspiration has flown 
in the other direction. Use-Case 2.0 is the new 

generation of use-case-driven development—light, agile, and 
lean—inspired by user stories and the agile methodologies 
Scrum and Kanban.

Use-Case 2.0 has all the popular values from the past—
not just supporting requirements, but also architecture, 
design, test, and user experience—and it is instrumental in 
business modeling and software reuse.

Use-Case 2.0 has been inspired by user stories to assist 
with backlogs à la Scrum and one-piece flow with Kanban, 
with the introduction of an important new concept, the use-
case slice.

This article makes the argument that use cases 
essentially include the techniques that are provided by user 
stories but offer significantly more for larger systems, larger 
teams, and more complex and demanding developments. 
They are as lightweight as user stories, but can also scale in 
a smooth and structured way to incorporate as much detail 

IVAR JACOBSON, IAN SPENCE, AND BRIAN KERR

1 of 30 TEXT  
ONLY 

Use-Case 2.0 
The Hub of Software Development



acmqueue | january-february 2016   95

development

as needed. Most importantly, they drive and connect many 
other aspects of software development.

USE CASES—WHY STILL SUCCESSFUL AND POPULAR?
Use cases were introduced at OOPSLA 87 (Object-Oriented 
Programming Systems, Languages, and Applications),6 
although they were not widely adopted until the publication 
of the 1992 book Object-Oriented Software Engineering—a 
Use-Case–Driven Approach.7 Since then many other authors 
have adopted parts of the idea, notably Alistair Cockburn2 
concerning requirements and Larry Constantine4 regarding 
designing for better user experiences. Use cases were 
adopted as a part of the standard UML (Unified Modeling 
Language1), and its diagrams (the use case and the actor 
icons) are among the most widely used parts of the language. 
Many other books and papers have been written about use 
cases for all kinds of systems—not just for software, but also 
business, systems (such as embedded systems), and systems 
of systems. Focusing on today and the future, the latest 
macro-trends, IoT (Internet of Things) and Industrial Internet, 
have made use cases their choice.9  

The use-case practice has evolved over the years, inspired 
by ideas from many different people, with the newer ideas 
incorporated into Use-Case 2.0. One new idea is slicing a use 
case into use-case slices.5,8 The idea of sizing these slices to 
become suitable backlog items and relating them to user 
stories is at the core of Use-Case 2.0.

Use cases can and should be used to drive software 
development. They do not prescribe how you should plan or 

2 of 30



acmqueue | january-february 2016   96

development

manage your development work, or how you should design, 
develop, or test your system. They do, however, provide 
a structure for the successful adoption of your selected 
management and development practices.

The reason for the success of the use-case approach 
is not just that it is a very practical technique to capture 
requirements from a usage perspective or to design practical 
user experiences, but it impacts the whole development 
lifecycle. The key use cases—or to be more precise, the key 
use-case slices (a slice being a carefully selected part of a 
use case)—assist systematically in finding the application 
architecture. They drive the identification of components or 
other software elements in software design. They are the 
elements that have to go through testing—and truly support 
test-driven design. They are the elements to put in the 
backlog when planning sprints or to put on the canvas using 
Kanban. The use cases of a business are the processes of the 
business; thus, the advantage of doing business modeling 
with use cases is that it leads directly to finding the use 
cases of the system to be developed to support the business. 
Moreover, use cases help in finding commonalities, which 
directs the architecture work to achieve software reuse. 

There are many more similar values in applying use cases, 
but most important is that the idea of use cases is intuitively 
graspable. This is a lightweight, lean and agile, scalable, 
versatile, and easy-to-use approach. Many people who hear 
about use cases for the first time takes them to heart; many 
start using the term in everyday-life situations without 
thinking about all the details that help with so many aspects 

3 of 30



acmqueue | january-february 2016   97

development

of software development—the aspects that are the spokes of 
the software-development wheel in which use cases are the 
hub (see figure 1).

Thus, it seems clear that use cases have stood the test of 
time and have a very healthy future.

PRINCIPLES FOR USE-CASE ADOPTION
There are six basic principles at the heart of any successful 
application of use cases:
1. Keep it simple by telling stories.
2. Understand the big picture.
3. Focus on value.
4. Build the system in slices. 

4 of 30

use
cases

user
experience

design

test

software
design

architecture

requirements

reuse

sprint
planning

business
modeling

FIGURE 1: Use cases are the hub of software development



acmqueue | january-february 2016   98

development

5. Deliver the system in increments. 
6. Adapt to meet the team’s needs. 

Principle 1: Keep it simple by telling stories
Storytelling is how cultures survive and progress; it is the 
simplest and most effective way to pass knowledge from one 
person to another. It is the best way to communicate what 
a system should do and to get everybody working on the 
system to focus on the same goals. 

Use cases capture the goals of the system. To understand 
a use case, we tell stories. The stories cover how to achieve 
the goal and how to handle problems that occur on the 
way. Use cases provide a way to identify and capture all the 
different but related stories in a simple but comprehensive 
way. This enables the system’s requirements to be easily 
captured, shared, and understood.

Principle 2: Understand the big picture
Whether the system you are developing is large or small, 
whether it is a software system, a hardware system, or a 
business system, understanding the big picture is essential. 
Without an understanding of the system as a whole, you will 
find it impossible to make the correct decisions about what 
to include in the system, what to leave out, what it will cost, 
and what benefit it will provide.

A use-case diagram is a simple way of presenting an 
overview of a system’s requirements. Figure 2 is the use-
case diagram for a simple telephone system. This picture 
shows all the ways the system can be used, who starts the 

5 of 30



acmqueue | january-february 2016   99

development

interaction, and any other parties involved. For example, a 
calling subscriber can place a local call or a long-distance 
call to any of the system’s callable subscribers. You can also 
see that the users don’t have to be people but can be other 
systems and, in some cases, both (for example, the role of the 
called subscriber might be an answering machine and not a 
person). 

Principle 3: Focus on value
When trying to understand how a system will be used, it is 
always important to focus on the value it will provide to its 
users and other stakeholders. Value is generated only if the 

6 of 30

FIGURE 2: use-case diagram for a simple telephone system

place
local call

place
long distance

call

retrieve
customer
billing info

get call
history

callable
subscriber

calling
subscriber

billing
system

customer



acmqueue | january-february 2016   100

development

system is actually used, so it is much better to focus on how 
the system will be used than on long lists of the functions or 
features it will offer.

Use cases provide this focus by concentrating on how the 
system will be used to achieve a specific goal for a particular 
user. They encompass many ways of using the system: those 
that successfully achieve the goals and those that handle 
any problems that may occur. 

Figure 3 shows a use-case narrative structured in this 
way for the cash-withdrawal use case of a cash machine. The 
simplest way of achieving the goal is described by the basic 
flow. The others are presented as alternative flows. In this 
way you create a set of flows that structure and describe 
the stories, helping to find the test cases that complete their 
definition.

7 of 30

FIGURE 3: structure of a use-case narrative

basic flow
 1. insert card
 2. validate card
 3. select cash withdrawal
 4. select account
 5. confirm availability of  
  funds
 6. return card
 7. dispense cash

  alternative flows
 A1 invalid card
 A2 non-standard amount
 A3 receipt required
 A4 insufficient funds  
  in ATM
 A5 insufficient funds in  
  account
 A6 would cause overdraft
 A7 card stuck
 A8 cash left behind
  etc.



acmqueue | january-february 2016   101

development

This kind of bulleted outline may be enough to capture 
the stories and drive the development, or it may need to be 
elaborated on as the team explores the details of what the 
system needs to do.
 
Principle 4: Build the system in slices
Most systems require a lot of work before they are usable 
and ready for operational use. They have many requirements, 
most of which are dependent on other requirements being 
implemented before they can be fulfilled and value delivered. 
It is always a mistake to try to build such a system in one go. 
The system should be built in slices, each of which has clear 
value to the users.

The recipe is quite simple. First, identify the most useful 
thing that the system has to do and focus on that. Then take 
that one thing, and slice it into thinner slices. Decide on 
the test cases that represent acceptance of those slices. 
Choose the most central slice that travels through the entire 
concept from end to end, or as close to that as possible. 
Estimate it as a team and start building it.

This is the approach taken by Use-Case 2.0, where the use 
cases are sliced up to provide suitably sized work items, and 
where the system itself evolves slice by slice.

Although use cases have traditionally been used to help 
understand and capture requirements, they have always been 
about more than this. The use-case slices slice through more 
than just the requirements; they also slice through all the 
other aspects of the system and its documentation, including 
the design, implementation, test cases, and test results. 

8 of 30

http://blog.gdinwiddie.com/2011/05/01/splitting-user-stories/


acmqueue | january-february 2016   102

development

Principle 5: Deliver the system in increments
Most software systems evolve through many generations. 
They are not produced in one go; they are constructed as 
a series of releases, each building on the one before. Even 
the releases themselves are often not produced in one go 
but evolve through a series of increments. Each increment 
provides a demonstrable or usable version of the system. 
This is the way that all systems should be produced. 

Figure 4 shows the incremental development of a system 

9 of 30

FIGURE 4: Use cases, use-case slices, increments, and releases

first
increment

start
up

use case 1

use case 2

use case 3

use case 4

second
increment

third
increment

fourth
increment

release
ready handover

slice 1.1 slice 1.1 slice 1.1 slice 1.1

slice 1.2 slice 1.2 slice 1.2

slice 2.1 slice 2.1 slice 2.1

slice 3.1 slice 3.1

slice 4.1 slice 4.1

slice 2.2

slice 3.2

slice 4.2

release
candidate

released
system



acmqueue | january-february 2016   103

development

release. The first increment contains only a single slice—
the first slice from use-case 1. The second increment adds 
another slice from use-case 1 and the first slice from use-
case 2. Further slices are then added to create the third 
and fourth increments. The fourth increment is considered 
complete and useful enough to be released.

Principle 6: Adapt to meet the team’s needs
Unfortunately, there is no one-size-fits-all solution to the 
challenges of software development; different teams and 
different situations require different styles and different 
levels of detail. Regardless of which practices and techniques 
you select, you need to make sure that they are adaptable 
enough to meet the ongoing needs of the team.

Use-Case 2.0 is designed with this in mind and can be 
as light as desired. Small, collaborative teams can have 
very lightweight use-case narratives that capture the bare 
essentials of the stories. These can be handwritten on simple 
index cards. Large distributed teams can have more detailed 
use-case narratives presented as documents. It is up to the 
team to decide whether or not they need to go beyond the 
essentials, adding detail in a natural fashion as they encounter 
problems that the bare essentials cannot cope with. 

THE USE-CASE 2.0 PRACTICE
The Use-Case 2.0 practice describes the key concepts to 
work with, the work products used to describe them, and a 
set of activities.

10 of 30



acmqueue | january-february 2016   104

development

Concepts to work with
Use-Case 2.0 encompasses the requirements, the system to 
be developed to meet the requirements, and the tests used 
to demonstrate that the system meets the requirements. At 
the heart of Use-Case 2.0 are the use case, the use-case slice, 
and the story.

Use cases capture the requirements, and each use case 
is scope managed by slicing it up into a set of use-case slices 
that can be worked on independently. Telling stories bridges 
the gaps between the stakeholders, the use cases, and the 
use-case slices. This is how the stakeholders communicate 
their requirements and explore the use cases. Understanding 
the stories is also the mechanism for finding the right use-
case slices to drive the implementation of the system.

Use Cases 
A use case is:
3 A sequence of actions a system performs that yields an 
observable result of value to a particular user.
3 That specific behavior of a system, which participates in 
collaboration with a user to deliver something of value for 
that user.
3 The smallest unit of activity that provides a meaningful 
result to the user. 
3 The context for a set of related requirements.

Taken together, the set of all use cases gives us all the 
functional requirements of the system.

The way to understand a use case is to tell stories. These 
stories cover both how to achieve a goal and how to handle 

11 of 30



acmqueue | january-february 2016   105

development

any problems that occur on the way. They help developers 
understand the use case and implement it slice by slice. 

A use case undergoes several defined state changes, 
beginning with just having its goal established, through 
story structure understood, simplest story fulfilled, 
sufficient stories fulfilled, to all stories fulfilled. The states 
constitute important waypoints in the understanding and 
implementation of the use case. 

Use-Case Slices
Use cases cover many related stories of varying importance 
and priority. There are often too many stories to deliver in a 
single release and generally too many to work on in a single 
increment. Hence, there is a need for dividing use cases into 
smaller pieces.

A use-case slice is one or more stories selected from a 
use case to form a work item that is of clear value to the 
customer. It acts as a placeholder for all the work required 
to complete the implementation of the selected stories. The 
use-case slice evolves to include the corresponding slices 
through design, implementation, and test.

The use-case slice is the most important element of Use-
Case 2.0, as it is used not only to help with the requirements, 
but also to drive the development of a system to fulfill them.

A use-case slice undergoes several state changes, from 
its initial identification where it is scoped, through being 
prepared, analyzed, implemented, and, finally, verified. These 
states allow for planning and tracking the understanding, 
implementation, and testing of the use-case slice.

12 of 30



acmqueue | january-february 2016   106

development

To the casual observer glancing at the states, this might 
look like a waterfall process. There’s a big difference, though, 
as this involves an individual use-case slice. Across the set 
of slices all the activities could be going on in parallel. While 
one use-case slice is being verified, another use-case slice is 
being implemented, a third is being prepared, and a fourth is 
being analyzed. 

Stories
Telling stories is how developers explore use cases with 
stakeholders. Each story of value to the users and other 
stakeholders is a thread through one of the use cases. The 
stories can be functional or non-functional in nature. 

A story is described by part of the use-case narrative, 
one or more flows and special requirements, and one or 
more test cases. The key to finding effective stories is 
to understand the structure of the use-case narrative. 
The network of flows can be thought of as a map that 
summarizes all the stories needed to describe the use 
case. In the previous cash-machine example in figure 3, you 
could identify specific stories such as “Withdraw a standard 
amount of $100,” “Withdraw a nonstandard amount of $75 
and get a receipt,” or “Respond to an invalid card.”

Each story traverses one or more flows beginning with 
the use case at the start of the basic flow and terminating 
with the use case at the end of the basic flow. This ensures 
that all the stories are related to the achievement of 
the same goal, are complete and meaningful, and are 

13 of 30



acmqueue | january-february 2016   107

development

complementary, as they all build upon the simple story 
described by the basic flow.

Work Products
Use cases and use-case slices are supported by a number of 
work products that the team uses to help share, understand, 
and document them. 

A use-case model visualizes the requirements as a set of 
use cases, providing an overall big picture of the system to 
be built. The model defines the use cases and provides the 
context for the elaboration of individual use cases.

Use cases are explored by telling stories. Each use case is 
described by (1) a use-case narrative that outlines its stories 
as a set of flows; and (2) a set of test cases that complete the 
stories. These can be complemented with a set of special 
requirements that apply to the whole use case and are often 
non-functional. These will influence the stories, help assign 
the right stories to the use-case slices for implementation, 
and, most importantly, define the right test cases.

The use-case model is complemented by supporting 
information. This captures the definitions of the terms used 
in the use-case model and when outlining the stories in 
the use-case narratives. It also captures any systemwide 
requirements that apply to all of the use cases.

A use-case realization can be created to show how the 
system’s elements collaborate to perform a use case. 
Think of the use-case realization as providing the “how” to 
complement the use-case narrative’s “what.” Common ways 
of expressing use-case realizations include simple tables, 
storyboards, or sequence diagrams. 

14 of 30



acmqueue | january-february 2016   108

development

Working with the use cases and use-case slices
In addition to creating and tracking the work products, 
developers need to track the states and properties of use 
cases and use-case slices. This can be done in many ways and 
with many tools. The states can be tracked very simply using 
sticky notes or spreadsheets. If more formality is required, 
then one of the many commercially available requirements-
management, change-management, or defect-tracking tools 
can be used.

Figure 5 shows a use case and some of its slices captured 
on a set of sticky notes.

The use case shown is “7. Browse and Shop” from an online 

FIGURE 5: Capturing the properties of a use case and its slices using sticky notes

7.1 select and buy
1 product

flows: BF
test: 1 product, 
default payment,
valid details

priority: MUST
release: 1
size: very large
complexity: high

7. browse
and shop

shopper

5

7.2 select and buy
100 products

flows: BF
test: 100 products, 
default payment,
valid details

5

a use case and its properties
captured on a sticky note

some slices from the
use case captured on
their own sticky notes

7.3 support systems
unavailable

flows: BF, A9, A10,
A1, A12
test: select product, 
provide information,
disconnect each
system in between 13

15 of 30



acmqueue | january-february 2016   109

development

shopping application. Slices 1 and 2 of the use case are based 
on individual stories derived from the basic flow: “Select and 
Buy 1 Product” and “Select and Buy 100 Products.” Slice 3 
is based on multiple stories covering the availability of the 
various support systems involved in the use case. 

The essential properties for a use case are its name, state, 
and priority. In this case the popular MoSCoW (Must, Should, 
Could, Would) prioritization scheme has been used. The use 
cases should also be estimated. Here a simple scheme of 
assessing relative size and complexity has been used.

The essential properties for a use-case slice are: (1) a list 
of its stories; (2) references to the use case and the flows 
that define the stories; (3) references to the tests and test 
cases that will be used to verify its completion; and (4) an 
estimate of the work needed to implement and test the 
slice. In this example the stories are used to name the slice, 
and the references to the use case are implicit in the slices 
number and list of flows. The estimates have been added 
later after consultation with the team. These are the large 
numbers toward the bottom right of each sticky note. In this 
case the team has played Planning Poker to create relative 
estimates using story points.

The use cases and the use-case slices should also be 
ordered so that the most important ones are addressed first.

Keeping work products as lightweight as appropriate
All of the work products are defined with a number of 
levels of detail. The first level defines the bare essentials, 
the minimal amount of information that is required for the 

16 of 30



acmqueue | january-february 2016   110

development

practice to work. Further levels of detail are defined to help 
the team cope with any special circumstances they might 
encounter. This allows small, collaborative teams to have 
very lightweight use-case narratives defined on simple index 
cards and large distributed teams to have more detailed use-
case narratives presented as documents. The teams can then 
grow the narratives as needed to help with communication 
or thoroughly define the important or safety-critical 
requirements.

The good news is that you always start in the same way, 
with the bare essentials. The team can then continually adapt 
the level of detail in their use-case narratives to meet their 
emerging needs.

Things to do
Use-Case 2.0 breaks the work up into a number of essential 
activities that need to be done if the use cases are to provide 
real value to the team.

The Find Actors and Use Cases activity produces a 
use-case model that identifies the use cases, which will 
be subsequently sliced. These use-case slices will then be 
prepared by describing the related stories in the use-case 
narrative and defining the test cases. The slice is analyzed 
to work out how the system elements will interact to 
perform the use case, then implemented and tested as a 
slice. Use-Case 2.0 can be considered a form of test-driven 
development, as it creates the test cases for each slice 
upfront. Finally, the whole system is tested to ensure that all 
the slices work together when combined. 

17 of 30



acmqueue | january-february 2016   111

development

The activities themselves will all be performed many times 
in the course of your work. Even a simple activity such as Find 
Actors and Use Cases may need to be performed many times 
to find all the use cases and may be conducted in parallel with, 
or after, the other activities. For example, while continuing 
to Find Actors and Use Cases, you may also be implementing 
some of the slices from those use cases found earlier. 

As the project progresses, priorities change, lessons 
are learned, and changes are requested. These can all have 
an impact on the use cases and use-case slices that have 
already been implemented, as well as those still waiting to 
progress. This means there will be an ongoing Inspect and 
Adapt activity for the use cases. This will also adapt the way 
of working with the Use-Case 2.0 practice to adjust the size 
of slices or the level of details in work products to meet the 
varying demands of the project and team.

USING USE-CASE 2.0
Many people think that use cases are applicable only to user-
intensive systems that have a lot of interaction between 
the human users and the system. This is strange because 
the original idea for use cases came from telecom switching 
systems, which have both human users (subscribers, 
operators) and machine users, in the form of other 
interconnected systems. Use cases are applicable to all 
systems that are used—and that means all systems.

It’s not just for user-intensive applications
In fact, use cases are just as useful for embedded 

18 of 30



acmqueue | january-february 2016   112

development

systems with little or no human interaction as they are 
for user-intensive ones. People are using use cases in the 
development of all kinds of embedded software in domains as 
diverse as motor, consumer electronics, military, aerospace, 
and medical industries. Even realtime process-control 
systems used for chemical plants can be described by use 
cases where each use case focuses on a specific part of the 
plant’s process behavior and automation needs.

It’s not just for software development
The application of use cases is not limited to software 
development. They can also help understand business 
requirements, analyze existing business, design new and 
better business processes, and exploit the power of IT to 
transform business. By using use cases recursively to (1) 
model the business and its interactions with the outside 
world and (2) model the systems needed to support and 
improve the business, developers can seamlessly identify 
where the systems will impact the business and which 
systems are needed to support the business.

Handling all types of requirements
Although they are one of the most popular techniques for 
describing systems’ functionality, use cases are also used 
to explore non-functional characteristics. The simplest 
way of doing this is to capture them as part of the use 
cases themselves—for example, relating performance 
requirements to the time taken between specific steps of a 
use case or listing the expected service levels for a use case 

19 of 30



acmqueue | january-february 2016   113

development

as part of the use case itself.
Some non-functional characteristics are subtler than 

this and apply to many, if not all, of the use cases. This is 
particularly true when building layered architectures, 
including infrastructure components such as security, 
transaction management, messaging services, and data 
management. The requirements in these areas can still be 
expressed as use cases—separate use cases focused on the 
technical usage of the system. These additional use cases 
are called infrastructure use cases,8 as the requirements they 
contain will drive the creation of the infrastructure on which 
the application will run.

Applicable for all development approaches
Use-Case 2.0 works with all popular software-development 
approaches, including:
3  Backlog-driven iterative approaches such as Scrum, EssUP, 

and OpenUP.
3 One-piece flow-based approaches such as Kanban.
3 All-in-one-go approaches such as the traditional waterfall.

Use-Case 2.0 and backlog-driven iterations
Before adopting any backlog-driven approach, you must 
understand what items will go in the backlog. There are 
various forms of backlogs that teams use to drive their work, 
including product, release, and project backlogs. Regardless 
of the terminology used, they all follow the same principles. 
The backlog itself is an ordered list of everything that might 
be needed and is the single source of requirements for any 
changes to be made. 

20 of 30



acmqueue | january-february 2016   114

development

FIGURE 6: Use-case 2.0 activities for iterative development approaches

prepare the backlog

demon-
strate

and
reflect

plan the
time box

develop and test slices

maintain the backlog

find actors
and use cases

slice the
use cases

prepare a
use-case

slice

slice
the
use

cases
inspect &
adapt the
use cases

slice the
use cases

prepare a
use-case

slice

find actors
and use

cases

prepare
use-case

slice

analyze
a use-case

slice

implement
software

(for a slice)

test the
system

(for a slice)

inspect &
adapt the
use cases

test the
system

(as a whole)

before development

every development iteration

21 of 30



acmqueue | january-february 2016   115

development

In Use-Case 2.0, the use-case slices are the primary 
backlog items. The use of use-case slices ensures that 
backlog items are well formed, as they are naturally 
independent, valuable, and testable. The structuring of 
the use-case narrative that defines them makes sure that 
they are estimable and negotiable, and the use-case slicing 
mechanism enables them to be sliced as small as needed to 
support the development team.

When a backlog-driven approach is adopted, it is 
important to realize that the backlog is not built and 
completed upfront but is continually worked on and refined. 
The typical sequence of activities for a backlog-driven, 
iterative approach is shown in figure 6.

Use-Case 2.0 and one-piece flow
One-piece flow is a technique taken from lean manufacturing 
that avoids the batching of the requirements seen in the 
iterative and waterfall approaches. Each requirements item 
flows quickly through the development process, but to work 
effectively, this technique needs small, regularly sized items. 
Use cases would be too irregularly sized and too big to flow 
through the system. Use-case slices, though, can be sized 
appropriately and tuned to meet the needs of the team. 

One-piece flow doesn’t mean that there is only one 
requirements item being worked on at a time or that there 
is only one piece of work between one workstation and the 
next. Enough items need to be in the system to keep the team 
busy. Work-in-progress limits are used to level the flow and 
prevent any wasteful backlogs from building up. Figure 7 

22 of 30



acmqueue | january-february 2016   116

development

shows a simple Kanban board for visualizing the flow of use-
case slices.

The work-in-progress limits are shown in red. Reading 
from left to right, you can see that slices have to be identified 
and scoped before they are input to the team. In this figure 
the work-in-progress limit is five, and the customers, product 
owner, or requirements team that are the source of the 
requirements try to keep five use-case slices ready for 
implementation at all times.

Note that there is no definitive Kanban board or set of 
work-in-progress limits; it is dependent on team structure 
and working practices. The board and work-in-progress 

FIGURE 7: Use-case slices on a Kanban board

5 3 34

input
preparation

on-going done
development

imple-
mented

analyzedpreparedscoped verified

on-going done
system

on-going done live

23 of 30



acmqueue | january-february 2016   117

development

limits should be tuned the same as practices. The states for 
the use-case slices are a great aid to this kind of work design 
as they can clearly define what state the slice should be in 
when it is to be handed to the next part of the chain. 

Use-Case 2.0 and waterfall
For various reasons you may need to develop software within 
the constraints of some form of waterfall governance model. 
This typically means that some attempt will be made to 
capture all the requirements upfront before they are handed 
over to a third party for development.

In a waterfall approach the use cases are not continually 
worked on and refined to allow the final system to emerge 
but are defined in one go at the start of the work. 

The one-thing-at-a-time nature of the waterfall approach 
means that the makeup of the team is continually changing 
over time, so the ability to use face-to-face communication 
to share the stories is very limited. To cope with this, you 
need to turn up the level of detail on the work products, 
going beyond the bare essentials.

Use-Case 2.0—It’s not just for one type of team
Another important aspect of Use-Case 2.0 is its ability 
to adapt to existing team structures and job functions 
while encouraging teams to eliminate waste and increase 
efficiency. To this end, Use-Case 2.0 does not predefine any 
particular roles or team structures, but it does define a set 
of states for each of the central elements (the use case and 
the use-case slice). 

24 of 30



acmqueue | january-february 2016   118

development

As illustrated by the discussion on Use-Case 2.0 and one-
piece flow, the states indicate when the items are at rest and 
could be handed over from one person or team to another. 
This allows the practice to be used with teams of all shapes 
and sizes, from small cross-functional teams with little or no 
handovers to large networks of specialist teams where each 
state change is the responsibility of a different specialist. 
Tracking the states and handovers of these elements 
allows the flow of work through the team (or teams) to be 
monitored, and teams to adapt their way of work to improve 
their performance continuously.

Scaling to meet your needs—in, out, and up
No one predefined approach fits everyone, so the use of 
Use-Case 2.0 needs to be scaled in a number of different 
dimensions:
3 Use cases scale in to provide more guidance to less-
experienced practitioners (developers, analysts, testers, 
etc.) or to practitioners who want or need more guidance. 
3 They scale out to cover the entire lifecycle, covering not 
only analysis, design, coding, and test, but also operational 
usage and maintenance.  
3 They scale up to support large and very large systems such 
as systems of systems: enterprise systems, product lines, 
and layered systems. Such systems are complex and typically 
developed by many teams working in parallel at different 
sites, possibly for different companies, and reusing many 
legacy systems or packaged solutions.

Regardless of the complexity of the system under 

25 of 30



acmqueue | january-february 2016   119

development

development, the development team always starts in the 
same way by identifying the most important use cases and 
creating a big picture summarizing what needs to be built. 
Use-Case 2.0 can then be adapted to meet the emerging 
needs of the team. In fact, the Use-Case 2.0 practice 
insists that you continuously inspect and adapt its usage to 
eliminate waste, increase throughput, and keep pace with the 
ever changing demands of the team.

USER STORIES AND USE CASES—WHAT IS  
THE DIFFERENCE?
The best way to answer this question is to look at the 
common properties of user stories and use cases—the things 
that make both work well as backlog items and enable both 
to support popular agile approaches such as Scrum, Kanban, 
test-driven development, and specification by example.

Use-Case slices and user stories3 share many common 
characteristics. For example:
3  They both define slices of the functionality that teams can 

get done in a sprint.
3  They can both be sliced up if they are too large, resulting in 

more, smaller items.
3 They can both be written on index cards.
3  They both result in test cases that represent the 

acceptance criteria.
3  They are both placeholders for a conversation and 

benefit from the three Cs invented by Ron Jeffries: card, 
conversation, and confirmation.

26 of 30



acmqueue | january-february 2016   120

development

3  They can both be estimated with techniques such as 
Planning Poker.

So, given that they share so many things in common, what 
is it that makes them different? Use cases and use-case 
slices provide added value:
3  A big picture to help people understand the extent of the 

system and its value.
3  Increased understanding of what the system does and how 

it does it.
3  Better organization, understanding, application, and 

maintenance of test assets.
3 Easy test-case generation and analysis.
3 Support for ongoing impact analysis.
3  Active scope management allowing easy focus on providing 

the minimal viable product.
3  Flexible, scalable documentation to help cope with 

traceability or other contractual constraints.
3  Support for simple systems, complex systems, and systems 

of systems.  
3 Easier identification of missing and redundant functionality.

The question remains: which technique should you use, 
which, once you go beyond personal preferences, is very 
context dependent. Consider the following factors: how 
much access is there to the SMEs (subject matter experts); 
and how severe will requirements errors be if they escape to 
a live environment.

The sweet spot for user stories is achieved when there is 
easy access to a SME and the severity of errors is low. Use 
cases and use-case slices are more suitable when there is no 

27 of 30



acmqueue | january-february 2016   121

development

easy access to a SME or when error consequences are high. 
Since the use-case approach can scale down to the sweet 
spot of user stories, however, you may still want to apply 
them. If the subject system will always be in the sweet spot 
of user stories, then user stories are fine, but if you expect it 
to grow outside that area, you should consider use cases and 
use-case slices. 

CONCLUSION
Use-Case 2.0 exists as a proven and well-defined practice 
that is compatible with many other software-development 
practices such as continuous integration, intentional 
architecture, and test-driven development. It also works 
with all popular management practices. In particular, it has 
the lightness and flexibility to support teams that work in an 
agile or lean fashion. It also has the completeness and rigor 
required to support teams that work in a more formal or 
waterfall environment.

More details about the fully documented Use-Case 2.0 
practice are available at http://www.ivarjacobson.com.

References
1.  Booch, G., Jacobson, I., Rumbaugh, J. 2004. The Unified 

Modeling Language Reference Manual, second edition. 
Addison-Wesley Professional.

2.  Cockburn, A. 2001. Writing Effective Use Cases. Addison-
Wesley Professional.

3.  Cohn, M. 2004. User Stories Applied. Addison-Wesley 
Professional.

28 of 30



acmqueue | january-february 2016   122

development

4.  Constantine, L., Lockwood, L. 1999. Software for Use. 
Addison-Wesley Professional.

5.  Jacobson, I. 2003. Case for aspects, part II. Software 
Development Magazine (November): 42-48.

6.  Jacobson, I. 1987. Object-oriented software development 
in an industrial environment. In Conference Proceedings 
of Object-oriented Programming Systems, Languages, and 
Applications (OOPSLA 87). 

7.  Jacobson, I., Christerson, M., Johnsson, P., Overgaards, G. 
1992. Object-Oriented Software Engineering: A Use Case-
Driven Approach. Addison-Wesley Professional.

8.  Jacobson, I., Ng, P.W. 2005. Aspect-oriented Software 
Development with Use Cases. Addison-Wesley 
Professional.

9.  Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R. 2015. 
Enterprise Internet of Things; http://enterprise-Internet of 
Things.org/book/enterprise-Internet of Things/.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Ivar Jacobson, Ph.D, is a father of components and 
component architecture, use cases, aspect-oriented software 
development, modern business engineering, the Unified 
Modeling Language, and the Rational Unified Process. His 
latest contribution to the software industry is a formal 
practice concept that promotes practices as the “first-class 
citizens” of software development and views method (or 
process) simply as a composition of practices. Jacobson is 
also one of the founders of the SEMAT (Software Engineering 

29 of 30

http://enterprise-iot.org/book/enterprise-iot/
http://enterprise-iot.org/book/enterprise-iot/
mailto:mailto:feedback%40queue.acm.org?subject=


acmqueue | january-february 2016   123

development

Method and Theory) community, the mission of which is to 
refound software engineering. He is the principal author of 
seven influential and best-selling books and a large number 
of papers. He was awarded the Gustaf Dalén medal (“the little 
Nobel Prize”), and he is an honorary doctor at San Martin de 
Porres University, Peru. 

Ian Spence is CTO at Ivar Jacobson International and the 
team leader for the development of the SEMAT (Software 
Engineering Method and Theory) kernel. An experienced 
coach, he has introduced hundreds of projects to iterative and 
agile practices. He has also led numerous successful large-
scale transformation projects working with development 
organizations of up to 5,000 people. His current interests 
are agile for large projects, agile outsourcing, and driving 
sustainable change with agile measurements.

Brian Kerr is an experienced agile coach, consultant, and 
change agent, and is a principal consultant at Ivar Jacobson 
International. He works with teams and organizations, 
helping them adopt key software-development practices in a 
pragmatic and sustainable way. He has particular expertise in 
the requirements space and has used, taught, and consulted 
in the use-case approach for the past 20 years across many 
industries and domains. He has been involved in the thought 
work behind the SEMAT (Software Engineering Method and 
Theory) initiative and the latest ideas captured in the Use-
Case 2.0 practice.

Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

30 of 30


