
Creating winning teams.

www.ivarjacobson.com

PRAGMATIC PRODUCT MANAGEMENT:
HINTS AND TIPS FROM THE FEATURE
COAL FACE

© Scaled Agile, Inc. 2

Creating winning teams.

Outline

• Check-In: The lifecycle of a Feature
• On your marks: Identifying the best Features
• Get set: The power of PI Planning
• Go: Shipping the right Features
• Winning the race: Delighting your customers
• Check Out: Sticking to our principles

Creating winning teams.

Check In

Creating winning teams.

Check In – Who’s in the audience?

Can	all	the	Product	Managers	/	
Product	Owners	please	stand	up!

And	now	all	the	SPCs	and	Change	
Agents.

Creating winning teams.

Check In – What is a Feature…

…and why are they so important?

Feature:
Phrase:

Benefit
Hypothesis:

Acceptance
Criteria:

Risks &
Dependencies

Notes :

Creating winning teams.

Check In – What is a Feature…

…and why are they so important?

Feature:
Phrase:

Benefit
Hypothesis:

Acceptance
Criteria:

Risks &
Dependencies

Notes :

Feature: 2.1

Phrase: Loyalty Discounts: The system shall allow customers to open and

maintain loyalty accounts, collect points and receive loyalty discounts.

Benefit

Hypothesis:
More repeat business.

Increased customer retention.

Acceptance

Criteria:
Existing loyalty cards are reflected in the on-line store.

New loyalty cards can be set up and issued from within the new system.

Additional points are available for on-line shopping.

Additional rewards are available for on-line shopping.

On-line customers can benefit from the loyalty scheme without being issued

a physical card.

Risks &

Dependencies
Integration with the exiting physical card based loyalty points system.

Notes : It is assumed that store accounts can be easily added to the Customer Preferences.

It is assumed that, as for the stores, special offers are already ‘points’ aware.

Creating winning teams.

Check In – What is a Feature…

…and why are they so important?

Feature:
Phrase:

Benefit
Hypothesis:

Acceptance
Criteria:

Risks &
Dependencies

Notes :

Feature: 2.1

Phrase: Loyalty Discounts: The system shall allow customers to open and

maintain loyalty accounts, collect points and receive loyalty discounts.

Benefit

Hypothesis:
More repeat business.

Increased customer retention.

Acceptance

Criteria:
Existing loyalty cards are reflected in the on-line store.

New loyalty cards can be set up and issued from within the new system.

Additional points are available for on-line shopping.

Additional rewards are available for on-line shopping.

On-line customers can benefit from the loyalty scheme without being issued

a physical card.

Risks &

Dependencies
Integration with the exiting physical card based loyalty points system.

Notes : It is assumed that store accounts can be easily added to the Customer Preferences.

It is assumed that, as for the stores, special offers are already ‘points’ aware.

Feature: E001Phrase: Spike – Investigate impediments to Release on Demand

BenefitHypothesis:
We understand what needs to be done to move to a continuous delivery

model:• Overall costs• Tooling optionsAcceptance Criteria:
• At least the Top 5 impediments are clear

• Costs to establish first round of improvements are clear

• Potential for improvements is clear

• A credible roadmap is available
Risks & Dependencies

Technical subject matter experts are not available
Notes : Time-Box to no more than 4 weeks.

Creating winning teams.

Check In – The lifecycle of a Feature

…and why are they so important?

Requested

Ready
(Understood / Clarified)

Committed

Previewed

Accepted

Released

Successful

A	request	has	been	received	for	the	system	to	provide	a	new	or	improved	
service.

The	Feature	is	clear,	well	understood	and	small	enough	for	a	team	to	be	
able	to	plan	its	completion.

The	Feature	has	been	pulled	by	a	Team	that	has	committed	to	its	delivery.

Enough	of	the	Feature	has	been	implemented,	and	demonstrated,	to	confirm	
the	benefits	hypothesis	and	verify	the	key	implementation	decisions.

The	Feature	has	been	shown	to	meet	its	acceptance	criteria	and	has	been	
accepted	by	Product	Management	as	ready	to	be	released.

The	Feature	is	fully	operational	and	has	been	made	generally	available	to	
its	users.

The	Feature	is	being	used	for	its	intended	purpose,	the	hypothesized	
benefits	are	being	accrued	and	stakeholder	feedback	is	positive.

Creating winning teams.

Check In – How do your Features flow?

…and why are they so important?And how far do they go?

Requested
Feature

1 / 7

§ Source is clear.

§ Meaningfully named

§ Not a story

§ Not an Epic

§ In the Backlog

§ Relevant

Ready

Feature

2 / 7

§ The Feature has a clear owner.

§ The Feature description is clear

§ Any ‘fixed’ requirements are known.

§ Level of key stakeholder involvement

is understood.

§ Small enough to fit within a PI

§ The cost of delay is clear

§ The Feature is testable.

§ The Feature is feasible

§ Potential benefits are understood.

Committed

Feature

3 / 7

§ Stories Outlined
§ Dependencies Understood
§ Lead team known
§ Working Relationships Established
§ New Estimate Available
§ Completion forecast
§ Acceptance criteria agreed
§ Benefits hypothesis confirmed
§ Technical Impact understood

Previewed

Feature

4 / 7

§ Key decisions verified§ Unwanted stories removed.
§ Story priorities clear§ Product Manager enthused

§ The gap to completion is known.
§ Release Forecast§ Acceptance criteria finalized

§ Risk under control.§ Benefits hypothesis supported
§ Viability confirmed

Accepted

Feature

5 / 7

§ No loose ends§ Accepted by the Feature Owner

§ Actuals known§ Acceptance Criteria met
§ All necessary stories accepted

§ Benefits hypothesis validated.

§ Releasable§ Fully tested§ Code complete

Released

Feature

6 / 7

§ Available to users

§ Help available

§ Actuals known

§ Success forecast

§ Benefits hypothesis assessable

§ All stories deployed

Successful

Feature

7 / 7

§ In use
§ Feedback positive
§ Actuals known
§ Benefits hypothesis accepted.

Creating winning teams.

Let’s play with the cards
• Step 1 – Create your game board

– Step 1.1 – Lay the cut deck of cards out left to right / states 1 to 7
– Step 1.2 - Pick a real case on your table
– Step 1.3 – Add a row for each group involved including at least Product

Management, Dev Team and Ops
• Add any additional rows as needed

• Step 2 – Lay out the cards to identify who is in the lead for each state
– Place the cards in each row maintaining the order
– If the state is not covered or used by your train leave it where it is

• Step 3 – Identify any additional states or handovers using the post-its
• Step 4 – Record your results

– Identify (and count) any hand-overs and or additional states
• Step 5 – Repeat for other scenarios on your table until your 15 minutes

is up

Creating winning teams.

Play Your Cards Right: Layout your game board
Requested

Feature

1 / 7

§ Source is clear.
§ Meaningfully named
§ Not a story
§ Not an Epic
§ In the Backlog
§ Relevant

Ready

Feature

2 / 7

§ The Feature has a clear owner.
§ The Feature description is clear
§ Any ‘fixed’ requirements are known.
§ Level of key stakeholder involvement

is understood.
§ Small enough to fit within a PI
§ The cost of delay is clear
§ The Feature is testable.
§ The Feature is feasible
§ Potential benefits are understood.

Committed

Feature

3 / 7

§ Stories Outlined
§ Dependencies Understood
§ Lead team known
§ Working Relationships Established
§ New Estimate Available
§ Completion forecast
§ Acceptance criteria agreed
§ Benefits hypothesis confirmed
§ Technical Impact understood

Previewed

Feature

4 / 7

§ Key decisions verified
§ Unwanted stories removed.
§ Story priorities clear
§ Product Manager enthused
§ The gap to completion is known.
§ Release Forecast
§ Acceptance criteria finalized
§ Risk under control.
§ Benefits hypothesis supported
§ Viability confirmed

Accepted

Feature

5 / 7

§ No loose ends
§ Accepted by the Feature Owner
§ Actuals known
§ Acceptance Criteria met
§ All necessary stories accepted
§ Benefits hypothesis validated.
§ Releasable
§ Fully tested
§ Code complete

Released

Feature

6 / 7

§ Available to users
§ Help available
§ Actuals known
§ Success forecast
§ Benefits hypothesis assessable
§ All stories deployed

Successful

Feature

7 / 7

§ In use
§ Feedback positive
§ Actuals known
§ Benefits hypothesis accepted.

PM

Dev

Ops

System	
Test

Creating winning teams.

Play Your Cards Right: Align the states

PM

Dev

Ops

System	
Test

Requested

Feature

1 / 7

§ Source is clear.
§ Meaningfully named
§ Not a story
§ Not an Epic
§ In the Backlog
§ Relevant

Ready

Feature

2 / 7

§ The Feature has a clear owner.
§ The Feature description is clear
§ Any ‘fixed’ requirements are known.
§ Level of key stakeholder involvement

is understood.
§ Small enough to fit within a PI
§ The cost of delay is clear
§ The Feature is testable.
§ The Feature is feasible
§ Potential benefits are understood.

Committed

Feature

3 / 7

§ Stories Outlined
§ Dependencies Understood
§ Lead team known
§ Working Relationships Established
§ New Estimate Available
§ Completion forecast
§ Acceptance criteria agreed
§ Benefits hypothesis confirmed
§ Technical Impact understood

Previewed

Feature

4 / 7

§ Key decisions verified
§ Unwanted stories removed.
§ Story priorities clear
§ Product Manager enthused
§ The gap to completion is known.
§ Release Forecast
§ Acceptance criteria finalized
§ Risk under control.
§ Benefits hypothesis supported
§ Viability confirmed

Accepted

Feature

5 / 7

§ No loose ends
§ Accepted by the Feature Owner
§ Actuals known
§ Acceptance Criteria met
§ All necessary stories accepted
§ Benefits hypothesis validated.
§ Releasable
§ Fully tested
§ Code complete

Released

Feature

6 / 7

§ Available to users
§ Help available
§ Actuals known
§ Success forecast
§ Benefits hypothesis assessable
§ All stories deployed

Successful

Feature

7 / 7

§ In use
§ Feedback positive
§ Actuals known
§ Benefits hypothesis accepted.

System	
Tested

Regress-
ion	

Tested

Release	
Tested

Review	
with	
CCB

Coded Tested

Creating winning teams.

Let’s play with the cards
• Step 1 – Create your game board

– Step 1.1 – Lay the cut deck of cards out left to right / states 1 to 7
– Step 1.2 - Pick a real case on your table
– Step 1.3 – Add a row for each group involved including at least Product

Management, Dev Team and Ops
• Add any additional rows as needed

• Step 2 – Lay out the cards to identify who is in the lead for each state
– Place the cards in each row maintaining the order
– If the state is not covered or used by your train leave it where it is

• Step 3 – Identify any additional states or handovers using the post-its
• Step 4 – Record your results

– Identify (and count) any hand-overs and or additional states
• Step 5 – Repeat for other scenarios on your table until your 15 minutes

is up

Creating winning teams.

Check In – Software Factory or Software Laboratory?

…and why are they so important?

Features	as	orders.
Clear	boundaries	and	

handovers.
Focus	on	productivity.
It	goes	in	- it	comes	out

Features	as	ideas.
Full	collaboration.
Focus	on	value.

It	goes	in	- it	may	come	out

Creating winning teams.

On your marks – Identifying the best Features

Creating winning teams.

On your marks – An open door and an early exit

Creating winning teams.

On your marks – Identifying Features
Most customer requests will be Features or, if too
large, sliceable Feature Sets.

But	some	will	be	irrelevant
Or	become	irrelevant.

Creating winning teams.

On your marks – How do you estimate your Features?

How do you estimate your Features?
1. Feature Points
2. T-Shirt Sizes
3. Story Point Ranges
4. Absolute Story Points
5. Other

Creating winning teams.

On your marks – How do you estimate your Features?

Creating winning teams.

On your marks – How do you estimate your Features?

• When:	as	
soon	as	the	
Feature	is	
queued

• use	story	
point	ranges

Forecasting	
Estimate

• When	team	
pulls	a	
Feature

• use	sum	of	
Story	Story	
Points	

Planning

Estimate

Creating winning teams.

On your marks – How do you slice Features?

HOW TO SLICE A FEATURE

ivarjacobson.com

1

2

3

PREPARE THE
INPUT FEATURE

EVALUATE
THE SLICING

APPLY THE
SLICING

PATTERNS

WARNING – Don’t slice Features unless
something is needed in the next PI �
Does the Feature satisfy INVEST*
(Except, perhaps sized appropriately)

YESYES

NO

Is the Feature size less than 1/10th
of your program velocity?**
(or typically medium or smaller).

You’re done
Continue. You
need to split it.

Reformulate the Feature to
clearly communicate the benefit
or slice off one or more smaller
Features which do satisfy
INVEST and carry clear benefit.

BREAK OUT
COMMON
ENABLERS

FIND A STORY
GROUP

KISS
(KEEP IT SIMPLE)

DEFER OPTIONAL
BEHAVIORS

SEPARATE BUSINESS
VARIATIONS

SEPARATE DIFFERENT
CHANNELS

ISOLATE SPECIAL
VARIATIONS

BREAK OUT
A SPIKE

CONSIDER
INCREMENTALLY
SOURCING DATA

ADDRESS DIFFERENT
USER GROUPS
INDIVIDUALLY

Inspired by, and complementary to, “How To Split A Story”, Richard Lawrence, www.agileforall.com

Are the new
Features roughly
equal in size?

YESYES

NO

Do each of the new Features
readily fit into a PI (< 1/10 of
the program velocity)?

Try another pattern on the
original Feature or the new
Features that are too large.

Could you break out the
common enablers into their
own ‘Architectural’ Features?
Delivering the enablers can
significantly de-risk, simplify
and reduce the estimates for
the other, related Features.

Do each of the new
Features satisfy
INVEST?

Is there an obvious Feature to start
with that gets you early benefit,
learning, risk reduction etc?

Try another pattern
to see if you can get this.

You’re done, though
you could try another
pattern to see if it gets
better results.

Could you find the set of
most valuable Stories and
develop and release them
as their own Feature?

Could you focus on the most popular / highest
volume cases first and treat the more specialized
corner cases as separate Features? You may find
that their value / cost ratio is very small and they

are never needed.

Could you slice the Feature to do that
simple core first and build on it later

with further Features?

Does the Feature have a simple
core that provides most of the

benefit and / or learning? This is
often the happy path with some

basic error handling.

Could you make the optional behaviors
separate Features to be done once the core

functionality / most popular option is in
place?

 Could you deliver it one business at a
time? Could you start with the simplest
business variant to generate quick wins

and fast feedback?

Does the Feature include lots
of optional behavior (for
example different ways to
achieve the same goal)?

Do the minimum �to answer the
questions and then start again at the

top of this process.

Does the Feature lend itself
to being released

incrementally to different
areas of the business?

Does the Feature need to be
delivered over different channels,

different mediums or different
routes to the customer?

Could you deliver it one technology /
one channel at a time? Could you start
with the channel or most value to the
business and add the other channels
over time?

Could you give each User Group their own
Feature? This can help you to better
understand the benefits to each group.
See also Break Out Common Enablers.

Could you deliver benefit with a
sub-set of the data? Could the

data be consumed
incrementally or sourced from

existing secondary source.

Does the Feature involve
different user groups with

different goals?

Does the Feature involve
different user groups that want

different sets of stories?

Does 80% of the
value come from

20% of the Stories?

Do many Features rely on the
same underlying system

behaviors (often making the
first of them selected to be
very large and complex)? Does the Feature

include Special
Variations?

Does the Feature
involve lots of data
from many sources?

Are you still baffled
about how to slice the

Feature?

Can you define the 1..3
questions most holding

you back?

Write a Spike / Knowledge
Enabler with those questions

in mind.

WARNING DON’T:
• Defer non-functional requirements
• Slice too early
• Over slice
• Slice by component
• Forget the Feature testing

LA
ST RESO

RT* INVEST Features should be:
Independent
Negotiable
Valuable
Estimable
Sized Appropriately
Testable

** Velocity varies between programs but as a
rule of thumb a program should be tackling at
least the ‘Top 10’ Features hence the no greater
than 1/10th of the program velocity guideline.

1

2

PREPARE THE INPUT FEATURE
• WARNING – Don’t slice Features unless

something is needed in the next PI J

APPLY THE SLICING PATTERNS
• KISS (Keep It Simple)
• Defer Optional Behavior
• Separate Business Variations
• Separate Different Channels
• Address Different User Groups Individually
• Consider Incrementally Sourcing Data
• Isolate Special Variations
• Break Out Common Enablers
• Find a Story Group
• Break Out a Spike

EVALUATE THE SLICING3

HOW TO SLICE A FEATURE

ivarjacobson.com

1

2

3

PREPARE THE
INPUT FEATURE

EVALUATE
THE SLICING

APPLY THE
SLICING

PATTERNS

WARNING – Don’t slice Features unless
something is needed in the next PI �
Does the Feature satisfy INVEST*
(Except, perhaps sized appropriately)

YESYES

NO

Is the Feature size less than 1/10th
of your program velocity?**
(or typically medium or smaller).

You’re done
Continue. You
need to split it.

Reformulate the Feature to
clearly communicate the benefit
or slice off one or more smaller
Features which do satisfy
INVEST and carry clear benefit.

BREAK OUT
COMMON
ENABLERS

FIND A STORY
GROUP

KISS
(KEEP IT SIMPLE)

DEFER OPTIONAL
BEHAVIORS

SEPARATE BUSINESS
VARIATIONS

SEPARATE DIFFERENT
CHANNELS

ISOLATE SPECIAL
VARIATIONS

BREAK OUT
A SPIKE

CONSIDER
INCREMENTALLY
SOURCING DATA

ADDRESS DIFFERENT
USER GROUPS
INDIVIDUALLY

Inspired by, and complementary to, “How To Split A Story”, Richard Lawrence, www.agileforall.com

Are the new
Features roughly
equal in size?

YESYES

NO

Do each of the new Features
readily fit into a PI (< 1/10 of
the program velocity)?

Try another pattern on the
original Feature or the new
Features that are too large.

Could you break out the
common enablers into their
own ‘Architectural’ Features?
Delivering the enablers can
significantly de-risk, simplify
and reduce the estimates for
the other, related Features.

Do each of the new
Features satisfy
INVEST?

Is there an obvious Feature to start
with that gets you early benefit,
learning, risk reduction etc?

Try another pattern
to see if you can get this.

You’re done, though
you could try another
pattern to see if it gets
better results.

Could you find the set of
most valuable Stories and
develop and release them
as their own Feature?

Could you focus on the most popular / highest
volume cases first and treat the more specialized
corner cases as separate Features? You may find
that their value / cost ratio is very small and they

are never needed.

Could you slice the Feature to do that
simple core first and build on it later

with further Features?

Does the Feature have a simple
core that provides most of the

benefit and / or learning? This is
often the happy path with some

basic error handling.

Could you make the optional behaviors
separate Features to be done once the core

functionality / most popular option is in
place?

 Could you deliver it one business at a
time? Could you start with the simplest
business variant to generate quick wins

and fast feedback?

Does the Feature include lots
of optional behavior (for
example different ways to
achieve the same goal)?

Do the minimum �to answer the
questions and then start again at the

top of this process.

Does the Feature lend itself
to being released

incrementally to different
areas of the business?

Does the Feature need to be
delivered over different channels,

different mediums or different
routes to the customer?

Could you deliver it one technology /
one channel at a time? Could you start
with the channel or most value to the
business and add the other channels
over time?

Could you give each User Group their own
Feature? This can help you to better
understand the benefits to each group.
See also Break Out Common Enablers.

Could you deliver benefit with a
sub-set of the data? Could the

data be consumed
incrementally or sourced from

existing secondary source.

Does the Feature involve
different user groups with

different goals?

Does the Feature involve
different user groups that want

different sets of stories?

Does 80% of the
value come from

20% of the Stories?

Do many Features rely on the
same underlying system

behaviors (often making the
first of them selected to be
very large and complex)? Does the Feature

include Special
Variations?

Does the Feature
involve lots of data
from many sources?

Are you still baffled
about how to slice the

Feature?

Can you define the 1..3
questions most holding

you back?

Write a Spike / Knowledge
Enabler with those questions

in mind.

WARNING DON’T:
• Defer non-functional requirements
• Slice too early
• Over slice
• Slice by component
• Forget the Feature testing

LA
ST RESO

RT* INVEST Features should be:
Independent
Negotiable
Valuable
Estimable
Sized Appropriately
Testable

** Velocity varies between programs but as a
rule of thumb a program should be tackling at
least the ‘Top 10’ Features hence the no greater
than 1/10th of the program velocity guideline.

All	summarized	on	this	handy	poster.
(Available	from	www.ivarjaobson.com)

Creating winning teams.

On your marks – There’s more than one way to skin a cat

Creating winning teams.

Next	PI	
Candidate PreparingFunnel Feature	

Summary Prioritization Backlog Planned Executing
Feature	
Validation

Release
Validation Deploying

Operational
Readiness

Impact	
Validation Done

Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done

On your marks – There’s more than one way to skin a cat

Creating winning teams.

Next	PI	
Candidate PreparingFunnel Feature	

Summary Backlog Planned Executing
Feature	
Validation

Release
Validation Deploying

Operational
Readiness

Impact	
Validation Done

Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done

Prioritization

On your marks – There’s more than one way to skin a cat

Creating winning teams.

Planned In	Progress

Te
am

	
1

Te
am

	
2

Te
am

	
3

Te
am

	
4

Te
am

	
5

Te
am

	
6

Not
Started

In	Analysis
Selected Being	

Prepared Prepared

In	Development
Demonstrated

Accepted Released

On your marks – There’s more than one way to skin a cat

Creating winning teams.

On your marks – So what can go wrong?

In pairs take a few minutes to discuss
things that can wrong during Feature
preparation.

Which do you think is the worst:
1. Too much preparation?
2. Too little preparation?

Creating winning teams.

On your marks – The Seven Sins of Feature Preparation

Seven Deadly Sins
of Feature Preparation

Pride – Pre-defining all the Stories
Sloth – Freezing the Scope

Lust – Gold Plating
Greed – Maximum Possible Features
Wrath – Disenfranchised POs & Teams

Gluttony – Believing the Initial Estimate
Envy – My Feature, My Team

+ The Original Sin:
The Pre-allocation of Features

Creating winning teams.

Get Set – The Power of PI Planning

Creating winning teams.

Get Set – The Power of PI Planning

• Pull don’t push
• Negotiate
• Don’t waterfall…..
• …Don’t try to shrink the event by preparing

your features…

Sprint	1.1	 Velocity:	 34
Load:	30

Sprint	1.2	 Velocity:	 34Load:	30
Sprint	1.3	 Velocity:	 34

Load:	30 Sprint	1.4	 Velocity:	 34
Load:	30

PI	OBJECTIVES
Objectives	 /
Business	Value
1. ….
2. ….
3. ….

Stretch	Objectives
1.	….

RISKS

Creating winning teams.

Get Set – Just say no to waterfalling your Features

Creating winning teams.

Go: Shipping the right Features

Creating winning teams.

Funnel Analyzing Backlog Implementing
Validating
on	Staging
Doing Done

Deploying	 to	
Production
Doing Done

Releasing Done

Go: Don’t develop in secrecy

Creating winning teams.

Planned In	Progress

Te
am

	
1

Te
am

	
2

Te
am

	
3

Te
am

	
4

Te
am

	
5

Te
am

	
6

Not
Started

In	Analysis
Selected Being	

Prepared Prepared

In	Development
Previewed

Accepted Released

Go: Don’t develop in secrecy

Creating winning teams.

Planned In	Progress

Te
am

	
1

Te
am

	
2

Te
am

	
3

Te
am

	
4

Te
am

	
5

Te
am

	
6

Not
Started

In	Analysis
Selected Being	

Prepared Prepared

In	Development
Demonstrated

Accepted Released

Go: Don’t ship in silence

Creating winning teams.

Funnel Analyzing Backlog Implementing
Validating
on	Staging
Doing Done

Deploying	 to	
Production
Doing Done

Releasing Done

Go: Don’t ship in silence

Creating winning teams.

Next	PI	
Candidate PreparingFunnel Feature	

Summary Prioritiztion Backlog Planned Executing
Feature	
Validation

Release
Validation Deploying

Operational
Readiness

Impact	
Validation Done

Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done

Go: Don’t ship in silence

Eliminate	
with	

DevOps!

Creating winning teams.

Next	PI	
Candidate PreparingFunnel Feature	

Summary Prioritiztion Backlog Planned Executing
Feature	
Validation

Release
Validation Deploying

Operational
Readiness

Impact	
Validation Done

Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done

Go: Don’t ship in silence

Next	PI	
Candidate PreparingFunnel Feature	

Summary Prioritiztion Backlog Planned Executing
Feature	
Validation

Release
Validation Deploying

Operational
Readiness

Impact	
Validation Done

Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done Doing Done

Creating winning teams.

Winning the Race

Creating winning teams.

Winning the race: What does it really mean to be done?

Requested

Ready
(Understood / Clarified)

Committed

Previewed

Accepted

Released

Successful

Product	
Manager

Dev	
Team

Ops

Product	
Manager Dev	

Team
Ops

Creating winning teams.

Value
WARNING:	Value	may	appear	closer	than	it	really	is!

Winning the race: Value realisation

Creating winning teams.

Winning the race: Balancing Flow with Forecasts

EPIC	Board	(Stakeholder	View)
• Long	term	view
• PI	Velocity	vs Forecast	Features
• Forecast	vs Time	Critical	Events
• Competing	Objectives	(Causal	Model)
• Influencing	decisions

Program	Board
• Epic	&	Feature	end	to	end	Flow
• “Real-time”	view	
• Transparency	of	Epic	&	Feature	state
• Risk	&	Issues

Creating winning teams.

Check Out: Stand by your Principles

Creating winning teams.

Check Out: Stand by your Principles

Take an
Economic View

…to sustain and grow your business.

#1

Stop Starting, Start Finishing

All outstanding work (whether it
has been started or not) should
be sequenced to minimize cost
of delay. Sunk costs should be
ignored to ensure the maximum
business benefit is generated
from the money about to be
spent.

The	backlog	is	prioritized	
with	the	stakeholders	using	
cost	of	delay	and	relative	
estimates	of	size.	Incomplete	
Features	are	re-estimated	
and	re-prioritized	every	PI.

J

L
The	HiPPOs rule	– it’s	my	
backlog	and	I	set	the	
priorities	only	adjusting	
them	when	someone	more	
important	overrules	me.	
Once	work	is	started	then	it	
is	never	stopped.

Creating winning teams.

Check Out: Stand by your Principles

Step	1	– Discuss	and	rank	the	principles
• They	can	have	the	same	rank	if	you	like
Step	2	– Complete	the	happiness	radiator
• Tick	each	row	to	indicate	how	well	you	believe	your	
Product	Management	Team	embodies	the	principle

Principle Rank

# 1 #	1 ✓ ✓

# 2 #	3	 ✓✓

# 3 #	1 ✓ ✓ ✓

# 4 #	2 ✓✓ ✓

K LJ

Creating winning teams.

Check Out: Stand by your Principles
Principle Happy Ambivalent Sad

1 Take an Economic View 13% 41% 46%

2 Apply Systems Thinking 34% 32% 34%

3 Assume variability; preserve options 18% 40% 42%

4
Build incrementally, with fast
integrated learning cycles

17% 34% 48%

5
Base milestones on objective
evaluation of working systems

18% 43% 39%

6
Visualize and limit WIP, reduce batch sizes,
and manage queue lengths

20% 34% 46%

7
Apply cadence, synchronize with
cross-domain planning

43% 26% 31%

8
Unlock the intrinsic motivation
of knowledge workers

15% 58% 27%

9 Decentralize decision-making 24% 21% 56%

Creating winning teams.

Check Out: Get hold of the props and so much more

www.ivarjacobson.com
– for electronic / printable versions of the all cards
– for blogs
– for posters
– for pocket guides

