
USE-CASE 3.0 The Definitive Guide - Refreshed

USE-CASE 3.0
The Guide to Succeeding with Use Cases
Refreshed

Ivar Jacobson

Ian Spence

Keith de Mendonca

May 2024

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 2

About this Guide 3

How to read this Guide 3

What is Use-Case 3.0? 4

The Use-Case Foundation 5

Underlying Principles 5
Core Concepts 5
A simple example 7

Exploring the Principles 14

Principle 1: Universally Applicable 14
Principle 2: Start with the big picture 14
Principle 3: Focus on value 16
Principle 4: Involve your stakeholders 17
Principle 5: Tell the whole story 18
Principle 6: Trigger conversations 18
Principle 7: Prioritize readability 19
Principle 8: Just enough, just in time 19
Principle 9: Implement in stages 20
Principle 10: Build the system in slices 22

Use-Case 3.0 Content 24

Things to Work With 24
Work Products 31
Things to do 36
Practices 43

Using Use-Case 3.0 53

Use-Case 3.0: Applicable for all types of system 53
Use-Case 3.0: handling all types of requirement 54
Use-Case 3.0: Applicable for all development lifecycles 54
Use-Case 3.0: Scaling to meet your needs – scaling in, scaling out and scaling up 63

Conclusion 64

Appendix 1: Work Products 65

Glossary of Terms 75

Acknowledgements 76

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 3

About this Guide
This guide describes how to apply use cases in an agile and scalable fashion. It builds on feedback and lessons
learned since the initial publication of the Use-Case 2.0 e-book in 2011. Our goal is to provide you with an
integrated family of practices which help you get the most out of your use cases. These practices are
applicable for small co-located agile teams, but are also applicable to large distributed teams, outsourcing,
and complex multi-system developments. Select, mix and match the use case practices described in this guide
to support your work; add use-case practices later if you need more detail and structure to guide your work.

This guide also outlines how to create user stories from use cases - it connects the power of use cases to the
complementary benefits of user stories. Use-Case 3.0 is 100% compatible with teams that are already using
User Stories.

This guide presents the essentials of use-case driven development as an accessible and re-usable set of
practices. It also provides an introduction to the idea of use cases and their application. It is deliberately kept
lightweight. This is not a comprehensive guide to all aspects of use cases, or a tutorial on use-case modeling.
It may not be sufficient for you to adopt the practice. For example, it is not intended to teach you how to
model, for this we refer you to our previously published books on the subject.

How to read this Guide
The guide is structured into four main chapters:

● What is Use-Case 3.0? – A two-page introduction to the Use-Case 3.0 practice family.

● First Principles – An introduction to use cases based around the 10 principles that act as the
foundation for the practice family.

● Use-Case 3.0 Content – An overview of the practice family as a whole presented as a set of key
concepts, activities, work products, and the rules that bind them together.

● Using Use-Case 3.0 – A summary of when and how to apply the practices that make up the Use-
Case 3.0 Practice Family.

These are topped and tailed with this brief introduction, and a short conclusion.

If you are new to use cases then you might want to read the “What is Use-Case 3.0?”, the “First Principles”,
and the “Using Use-Case 3.0” chapters to understand the basic concepts. You can then dip into the “Use-Case
3.0 Content” as and when you start to apply the practice.

If you are familiar with the basics of use cases then you might prefer to dive straight into the “Use-Case 3.0
Content” and “Using Use-Case 3.0” chapters once you’ve read the “What is Use-Case 3.0?” chapter. This will
help you compare Use-Case 3.0 with your own experiences and understand what has changed.

If you have previously read or applied Use-Case 2.0 then you will recognize the structure of the new practices.
Read the “Exploring the Principles” chapter to familiarize yourself with the update, and then follow the
advice above for people already familiar with use cases.

Throughout this document you will discover how use cases can be used to generate user stories, and be used
as an integral part of any agile development practice.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 4

What is Use-Case 3.0?

Use-Case 3.0 is a scalable, agile practice family that uses use cases to capture a set of requirements and
drive the incremental development of a system to fulfill them.

It drives the development of a system by first helping you understand how the system will be used and then
helping you evolve an appropriate system to support the users. It can be used alongside your chosen management
and technical practices to support the successful development of software and other forms of system. As you
will see Use-Case 3.0 is:

● Lightweight

● Scalable

● Versatile

● Easy to use

● Presented as a family of practices to aid adoption and focus on addressing your immediate
concerns

Use cases make it clear what a system is going to do and, by intentional omission, what it is not going to do.
They enable the effective envisioning, scope management and incremental development of systems of any
type and any size. They have been used to drive the development of software systems since their initial
introduction at OOPSLA in 1987. Over the years they have become the foundation for many different methods
and an integral part of the Unified Modeling Language. They are used in many different contexts and environments,
and by many different types of team. For example, use cases can be beneficial for both small agile
development teams producing user-intensive applications and large projects producing complex systems of
interconnected systems, such as enterprise systems, product lines, and systems in the cloud.

The use-case approach has a much broader scope than just requirements capture. Use cases can and should
be used to drive the development, which means that Use-Case 3.0 also supports the analysis, design, planning,
estimation, tracking and testing of systems. It does not prescribe how you should plan or manage your development
work, or how you should design, develop, or test your system. It does however provide a structure for the successful
adoption of your selected management and development practices.

Use-Case 3.0 exists as a proven and well-defined set of practices. Although the term Use-Case 3.0 suggests a
new version of use cases, it does not refer to an update of the Unified Modeling Language, but rather to
cumulative changes in the way software developers and business analysts apply use cases. A use case is still a use
case but the ways that we present, address, and manage them have all evolved to be more effective. The
changes are not theoretical but are pragmatic changes based on 30 years of experience from all over the
world and all areas of software development.

To get to the heart of what a system must do, focus on who or what will use it, and then look at
what the system must do for them to help them achieve their goals.

A use case is all the ways of using a system to achieve a goal of a particular user.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 5

The Use-Case Foundation
The Use-Case Foundation document by Ivar Jacobson and Alistair Cockburn presents a set of principles and
concepts that underlie all successful applications of use cases including Use-Case 3.0.

Use-Case 3.0 extends the foundation adding the concept of the Use-Case Slice; a foundational element of
Use-Case 2.0 and this update.

Underlying Principles
The foundational principles are:

1. Use cases apply to systems of all types and sizes: businesses, IT systems, physical systems or any
combinations thereof.

2. Use cases help you understand the big picture: the system’s purpose and how it will be used.
3. Use cases focus on value: the users’ goals and how best to achieve them.
4. Stakeholder involvement is essential: bring all the involved parties together to establish the intent

and scope of the system.
5. A use case tells the whole story, as a story, from the initial event to the realization of the value

it provides or the eventual failure if it can’t be met. It includes how to handle any problems and
alternatives that may occur on the way.

6. Use cases trigger conversations: while discussing the possible alternate flows, you and your co-
writers will think of missing steps and missing alternatives. These conversations help you find
situations that often get overlooked.

7. Prioritize readability: the goal is to communicate the big picture to everyone involved, generating
comments, spotting any gaps, and getting their buy-in.

8. The amount of detail and the format used will vary to match your circumstances: You can start
with a sketch of the flow of events and add detail as needed.

9. A use case can be implemented in stages: develop and put into place some key flows of a use
case early to capture value and feedback, add less used or less critical flows over time
strategically.

Use-Case 3.0 adds a tenth principle:

10. A system can be developed in slices where each slice is one or more paths through one of the
system’s use cases plus the relevant design, code and tests used to implement and verify them.

In this section we will look at the core concepts that underpin Use-Case 3.0 and how these principles are
applied in Use-Case 3.0.

Core Concepts
1. A system of interest

2. An actor with a goal
3. A flow-of-events (there will be several)
4. One or more use cases to collect the flows.
5. A use-case model to contextualize and visualize the use cases.
6. One or more use-case slices to scope the work.
7. One or more actionable work items (user stories, features, or tasks) to complete the work.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 6

FIGURE 1: A USE CASE

A Use Case – A use case is all the ways of using a system to achieve a goal of a particular user.

Notes:

● This includes all the successful, challenged and failure paths.
● It may be described textually or visually.
● It is independent of implementation, technology, and platform.

The System of Interest – The system used to achieve the goal.

An Actor – An actor identifies a role played when interacting with the system.

“Actor” is intended to cover anything with behavior. It can be a person, an organization, a piece of software,
or any combination.

A use case might involve many actors: the actor that initiates a use case is known as the “primary actor” and
the actors called upon by the system are known as “supporting actors”.

The Goal – The reason that the user will use the system and the value that they will receive when successfully
using the system.

The Flow of Events - A use case is presented as a network of flows, each describing a path to value. Taken
together the set of flows capture all the ways of using the system to achieve the goal of the primary actor.

A Use-Case Model – A model that captures and visualizes all the useful ways to use a system.

A Use-Case Slice – A slice of a use case that provides clear value to the user or other stakeholders. Typically,
a use-case slice captures one of the ways of using a system to achieve a goal.

Notes:

● A use-case slice always starts at the beginning of the use-case and ends at its end.

● A use-case slice will traverse one or more of the use-case’s flows.

● A use-case slice is always testable and will complement the flow of events with explicit test cases.

A Work Item – a small, actionable piece of work that can be given to an individual or team to complete. Most
use-case slices will require multiple work items to be completed to complete their development and testing.
Common forms of work item used to implement a use-case slice include User Stories, Features and Tasks.

A Use CaseAn Actor Another Actor

The System of Interest

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 7

A simple example
Let’s assume you are a musician who would like to find a new guitar to purchase from a music store over the
internet. With respect to an online music store, what role would you be playing and what would be your goal
with respect to the system?

When using use cases, we don’t want to have a separate actor for every type of shopper (guitarist, bassist,
singer, parent, school, manager etc.) and a different use case for every different product we sell (guitars,
oboes, microphones, effect pedals etc.) as the way they interact with the system to browse and shop for
products will be the same. We would probably end up with something like the use-case shown in FIGURE 2.

FIGURE 2: THE BROWSE AND SHOP USE CASE

Browse and ShopShopper

Stock Control

Payment System

Sales Advisor

I’d like to get a
new guitar.

The System of Interest

Primary Actor

In this case a
shopper with the goal of

selecting and purchasing a
product.

Supporting Actors
Other Actors that can be involved in the successful completion of

the use case. These can be other systems or other people.
In this case the system of interest needs to interact with a Stock
Control System, a Payment System, and for specialist, high value

products a Sales Advisor.

The System of Interest

In this case an on-line portal providing
advice on all things musical.

One of this system’s use cases is
‘Browse and Shop’

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 8

Although this use case captures the most valuable thing that our on-line music shop can do it probably isn’t
sufficient to make a usable system. Some other use cases may be required such as those shown in bold in
FIGURE 3:

FIGURE 3: EXPANDING OUR SET OF USE CASES

If you look closely, you might find issues and problems with this diagram such as missing actors, missing use
cases and confusing names. This is deliberate. This is exactly the sort of conversation that we want the Use-
Case Model and any supporting overview diagrams to start.

Each use case is presented as a network of flows, each describing a path to value.

Browse and ShopShopper

Stock Control

Sales Advisor

The System of Interest

Store Manager

Payment System

Maintain Inventory
(set prices, offers, availability)

Fulfill Orders
Delivery

Coordinator

Track Orders
Customer

Representative

Delivery
Management System

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 9

FIGURE 4: BASIC AND ALTERNATE FLOWS

The Basic Flow – The normal, happy path to value often referred to as the ‘main scenario’ or the ‘happy
path.’ This is described as a simple sequence of steps each of which involves the system and / or one of the
actors doing something.

Alternate Flows – A list of all the special cases, alternative paths, optional steps, and errors that need to be
handled.

The key aspect of a use case is its structure: the way it identifies the basic and alternate flows – this acts as
a map of how the system will be used. The flow of events can be described as simply as a bulleted list of
steps and alternatives, or elaborated to fully describe what should happen at each step or within each
alternative. It can be described in text, as above, or in some graphical form.

What is important is the accuracy of the flow of events and not how detailed you write out the steps and
alternatives.

FIGURE 5 presents a simple example of the flow of events of the Browse and Shop Use Case.

Basic Flow / Main Scenario

1. Step 1 – The use case starts when…
2. Step 2
3. Step 3

N. Step N

The use case ends.

Alternate Flows / Alternatives

Alt1 – Something that can go wrong
that needs to be handled
Alt 2 – Something optional that should
be provided
Alt 3 – A special case that needs to be
handled differently

Alt N

.

.

.
.
..

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 10

FIGURE 5: AN OUTLINE OF THE BROWSE AND SHOP USE CASE

If you look closely, you might find issues and problems with this use case such as missing steps and missing
alternatives. This is deliberate. This is exactly the sort of conversation that we want the use-case to start.

You will also notice that this is too much to implement in one go, and potentially more than you would ever
want to implement. Even the Basic Flow may be too much to address in your first pass.

This is where the idea of Use-Case Slices comes into play.

Basic Flow / Main Scenario

The use case starts when a Shopper
indicates they’d like to find a product

1. Browse Products
2. Select Products for Purchase
3. Provide Payment Details
4. Provide Delivery Details
5. Confirm Purchase

The use case ends.

Alternate Flows / Alternatives

Alt1 – Keyword search for products

Alt 2 – No products selected

Alt 3 – Invalid payment details

Alt 4 – Payment system unavailable

Alt 5 – Retrieve stored payment and
delivery details

Alt 6 Invalid delivery details

Alt 7 – Product out of stock

Alt 8 – Stock control system unavailable

Alt 9 – No purchase confirmation

Alt 10 – Quit shopping with no purchase

Alt 11 – Shopper stops responding

Alt 12 – Shopper needs expert advice

.

..

Help the shopper to find the most suitable product to meet their needs
and help them to purchase it.

Primary Actor:
Shopper

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 11

FIGURE 6: SLICING UP BROWSE AND SHOP

FIGURE 6 shows an initial slicing up of the Browse and Shop use case. In this case six slices have been
identified. These are considered to be sufficient to provide a robust, usable user experience.

Things to note here are that:

1. Not all of the flows have been included in the slicing. There is no need to slice up the entire use
case. Flows that are considered out of scope or that are not important at the moment can just
be left unsliced as part of the use case.

2. Multiple slices have been identified from the basic flow. In this case we have decided to separate
buying a single product from buying multiple products. This is to enable the early implementation
and testing of an end-to-end thread through the use case without having to wrestle with the
issues of handling multiple product selection and deliveries.

3. We can tackle the first two (or even all 6) slices without having to find and enumerate all of the
alternate flows.

We’ll talk more about slicing in later sections. The important things to remember about the Use-Case Slices
are that each slice:

● Provides clear value to the user or other stakeholders.

● Typically captures one of the ways of using a system to achieve the use case’s goal.

● Starts at the beginning of the use case and ends at its end.

● Traverses one or more of the use-case’s flows.

● Is testable and will complement the flow of events with explicit test cases.

The use-case slices make good items for scope and priority management. For example, it would be easy to
apply a prioritization scheme such as MoSCoW (Must, Should, Could, Won’t) to the slices identified above.

The slices are also a better mechanism for dividing up a use case than the use-cases flows and steps as they
leave more room for evolution during their analysis and design. For example, when working on Slice 4 Handle
Customer Data Issues we may discover that our original Alternate Flows become a set of discrete Alternate

Basic Flow / Main Scenario

The use case starts when a Shopper
indicates they’d like to find a product

1. Browse Products
2. Select Products for Purchase
3. Provide Payment Details
4. Provide Delivery Details
5. Confirm Purchase

The use case ends.

Alternate Flows / Alternatives

Alt1 – Keyword search for products

Alt 2 – No products selected

Alt 3 – Invalid payment details

Alt 4 – Payment system unavailable

Alt 5 – Retrieve stored payment and
delivery details

Alt 6 Invalid delivery details

Alt 7 – Product out of stock

Alt 8 – Stock control system unavailable

Alt 9 – No purchase confirmation

Alt 10 – Quit shopping with no purchase

Alt 11 – Shopper stops responding

Alt 12 – Shopper needs expert advice

.

..

Help the shopper to find the most suitable product to meet their needs
and help them to purchase it.

Primary Actor:
Shopper

Slices 1 and 2:
Slice 1 – Buy a single product
Slice 2 – Buy multiple products

Slice 3: Keyword Search

Slice 6: Customer
Walks Away

Slice 4: Handle
Customer Data

Issues

Slice 5: Product Unavailable

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 12

Flows or that there are other relevant Customer Data Issues that should be handled. These concerns will often
be ignored when addressing a single flow in isolation.

As you become more familiar with Use Cases and Use-Case Slices you may even start to discover the slices
before detailing out the individual flows.

The final step is to ensure that our slices are actionable by our development teams – we need to turn them
into the right types and size of work item to fit into their team backlogs and plans.

Note: As use cases and use-case slices are focused on end-to-end value they will often involve integrating
changes to multiple parts of the system and often the work of multiple teams.

The two most common types of work item we see in use now are User Stories and Tasks. Regardless of the
types of Work Item to be generated the basic principle is the same. To bring this idea to life we will take a
quick look at using Use-Case 3.0 with User Story and Task based work management approaches.

In this case we only have a single small team working on the system and so we don’t need to worry about
splitting the work across multiple teams.

So, taking our first slice and a User Story Approach we could get the team together and brainstorm the User
Stories needed to action the slice. FIGURE 7 shows the results from the initial brainstorm.

FIGURE 7: BRAINSTORMING USER STORIES FOR A SLICE

There are some interesting things to observe about this set of stories including:

1. There are some technical stories to prepare the ground for implementing the steps in the flow
(these are the two red stories at the left of the figure). In this case the team has decided to do
a technical spike to integrate the two supporting systems and to do a design spike to create some
wireframes to look at the shopping experience.

2. There is a technical story to ensure the end-to-end integration testing of the slice as a whole.
(this is the red story on the right of the figure). This will be in addition to the developer testing
of each individual story. If you are adopting a test-driven approach the creation and automation
of these tests will be the first thing the team does.

Basic Flow / Main Scenario

The use case starts when a Shopper
indicates they’d like to find a
product

1. Browse Products
2. Select Products for Purchase
3. Provide Payment Details
4. Provide Delivery Details
5. Confirm Purchase

The use case ends.

Browse and Shop
Slice 1 – Buy a single product

Test with 5 in stock product and
valid customer details.

A shopper
wants to buy a

product

Shopper has
placed an order

Browse
Products

Select Products
for Purchase

Provide
Payment Details

Provide
Delivery Details

Confirm
Purchase

As a shopper I want to see
the prices and other details
of a specific product so that
I don’t need to waste time

browsing.

As a shopper I want to
browse the products

available and identify my
favorite so that I can make

an informed decision.

As a shopper I want to
select an available product

so that I can purchase it.

As a shop I want to validate
that the shopper has the

funds available so that I can
safely allow them to order

the product.

As a shopper I want to pay
by Pay Pal so that I am not

restricted by the shops
credit facilities.

As a shop I want to double
check that the shopper

wants to go ahead with the
purchase so that we

minimize returns and
unwanted purchases.

As a shop I want to
collect the payment so

that we have the money
before reserving the

product and dispatching
the goods..

As a shopper I want final
confirmation the the order
has been accepted so that I

can be confident I will
receive the goods and can

track the state of the order.

As a shop I want to
validate that the

delivery address is valid
so that we minimize
fraud and products

going missing,.

As a shopper I want to have
the goods delivered to a
location of my choice so
that I am confident that

delivery will be delivered
successfully..

We want to connect to the
Stock Control and Payment
Systems so that we can be

sure we can deliver the
slice

We want to test the
scenario end-to-end using
5 different products and

the Test Shopper with
PayPal so that we can

verify the slice. We want to create a
wireframe model of the

shopper experience so that
we can ensure a pleasant

user experience.

Shop has
received
payment

THE USE-CASE
SLICE

THE TEAM’S USER-STORIES FOR THE
SLICE

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 13

If you look closely, you might find issues and problems with this set of User Stories such as missing or incorrect
stories or spikes. This is deliberate. This is exactly the sort of conversation that we want the use-case slice
to start. Remember this is the development team taking ownership of the delivery of the slice and
demonstrating amongst other things their understanding of the slice, their approach to its development and
the amount of work they expect it to be. This will typically be done as a whole team event where the team
interact with the subject matter experts in, and creators of, the use-case slice. By laying out the User Stories
in relationship to the flows being addressed we keep the development team connected to the original use
case.

If adopting a more task driven approach, then you could end up with something more like this:

● Task 1 – Screen Design

● Task 2 – Implement Stock Control Interface

● Task 3 – Implement Payment System Interface

● Task 4 – Set up the Middleware

● Task 5 – Code and Unit Test – UI

● Task 6 – Code and Unit Test – Business Objects

● Task 7 – Integration Test

● Task 8 – System Test

As a result of undertaking some analysis and planning to prepare the slice for implementation for example
producing some overview diagrams such as a wire frame and identifying the components to be added and
changed

The important thing to note here is that Use-Case 3.0 will support, focus and complement whatever planning,
work management and development approaches your teams have selected.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 14

Exploring the Principles
In this section we look at the underlying principles in more detail and use them to introduce the ideas behind
use-case storytelling, use-case modeling, and use-case driven development.

Principle 1: Universally Applicable
Use Cases apply to systems of all types and sizes: businesses, IT systems, physical systems, or any combinations
thereof.

Although traditionally associated with capturing requirements for software systems use cases can be used for
many other purposes and for many other types of system.

For example:

● Use Cases actually originated at Ericsson where they were initially used in the development of
physical switching systems

● Business Use Cases have been used for many years to help understand what a business does and
how it does it.

In fact, all we need to be able to benefit is system of interest that we intend to build, analyze, or change. A
system that has some users that want to use it to achieve their goals.

Use cases can be used to understand any kind of system including:

● Organizations

● Businesses

● IT Systems

● Physical Systems

● Infrastructure

In fact, any system as long as it has some actors that it interacts with.

This universal applicability is incredibly powerful as it:

1. Allows us to provide a consistent viewpoint on all our systems regardless of the type of system it
is. This makes all our work more accessible to our stakeholders.

2. We can start to understand the usage and context of our proposed solution before we decide what
type of system we should be build.

Principle 2: Start with the big picture
Use cases help you understand the big picture: the system’s purpose and how it will be used.

Whether the system you are developing is large or small, whether it is a software system, a hardware system,
or a new business, it is essential that you understand the big picture.

In our example above we started with a simple user goal and a use case exploring all the ways the system could be
used to achieve that particular goal.

Each use case presents a big picture of one aspect of the system and is often enough to get started. In the example
above if there are no shoppers turning up to browse and shop then our online shop is of no value.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 15

We can then move on to consider other users and their goals until we have created a usable system of clear value to
its users.

In many cases this will be insufficient and without an understanding of the system as a whole you will find it
impossible to make the correct decisions about what to include in the system, what to leave out of it, what
it will cost, and what benefit it will provide. This doesn’t mean capturing all the requirements up front. You
just need to create something that sums up the desired system and lets you understand scope and progress
at a system level.

A use-case diagram is a simple way of presenting an overview of a system’s requirements. Figure 1 shows the
use-case diagram for a simple telephone system. From this picture you can see all the ways the system can
be used, who starts the interaction, and any other parties involved. For example, a Calling Subscriber can
place a local call or a long-distance call to any of the system’s Callable Subscribers. You can also see that the
users don’t have to be people but can also be other systems, and in some cases both (for example the role of
the Callable Subscriber might be played by an answering machine and not a person).

FIGURE 8: A USE-CASE DIAGRAM FOR A SIMPLE TELEPHONE SYSTEM

A use-case diagram is a view into a use-case model. Use-case models acknowledge the fact that systems
support many different goals from many different stakeholders. In a use-case model the stakeholders that use
the system and contribute to the completion of the goals are modeled as actors, and the ways that the system
will be used to achieve these goals are modeled as use cases. In this way the use-case model provides the
context for the system’s requirements to be discovered, shared, and understood. It also provides an easily
accessible big picture of all the things the system will do. In a use-case diagram, such as FIGURE 8, the actors
are shown as stick-people and the use cases as ellipses. The arrowheads indicate the initiator of the
interaction (an Actor or the System) allowing you to clearly see who starts the use case.

A use-case model is a model of all the useful ways to use a system. It allows you to very quickly scope the

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 16

system – what is included and what is not – and give the team a comprehensive picture of what the system
will do. It lets you do this without getting bogged down in the details of the requirements or the internals of
the system. With a little experience it is very easy to produce use-case models for even the most complex
systems, creating an easily accessible big picture that makes the scope and goals of the system visible to
everyone involved.

Principle 3: Focus on value
Use cases focus on value: the users’ goals and how best to achieve them.

When trying to understand how a system will be used it is always important to focus on the value it will
provide to its users and other stakeholders. Value is only generated if the system is actually used; focus on
how the system will be used and avoid creating long lists of the functions or features it will offer.

Use cases provide this focus by concentrating on how the system will be used to achieve a specific goal for a
particular user. They encompass many ways of using the system; those that successfully achieve the goals,
and those that handle any problems that may occur. To make the value easy to quantify, identify and deliver
you need to structure the use-case narrative. To keep things simple start with the simplest possible way to
achieve the goal. Then capture any alternative ways of achieving the goal and how to handle any problems
that might occur whilst trying to achieve the goal. This will make the relationships between the ways of using
the system clear. It will enable the most valuable ways to be identified and progressed up front and allow the
less valuable ones to be added later without breaking or changing what has gone before.

In some cases, there will be little or no value in implementing anything beyond the simplest way to achieve
the goal. In other cases, providing more options and specialist ways of achieving the goal will provide the key
differentiators that make your system more valuable than your competitors.

FIGURE 9 shows a use-case narrative structured in this way. The simplest way of achieving the goal is described
by the basic flow. The others are presented as alternative flows. In this way you create a set of flows that
structure and describe the work products (e.g. user stories) and help us to find the test cases that complete
their definition.

FIGURE 9: THE STRUCTURE OF A USE CASE NARRATIVE

FIGURE 9 shows the narrative structure for the Withdraw Cash use case for a cash machine. The basic flow is
shown as a set of simple steps that capture the interaction between the users and the system. The alternative

BASIC FLOW ALTERNATE FLOWs

1. Insert Card

2. Validate Card

3. Select Withdraw Cash

4. Select Account

5. Confirm Availability of

Funds

6. Return Card

7. Dispense Cash

A1 Invalid Card

A2 Non-Standard Amount

A3 Receipt Required

A4 Insufficient Funds in ATM

A5 Insufficient Funds in Acc’t

A6 Would Cause Overdraft

A7 Card Stuck

A8 Cash Left Behind

etc….

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 17

flows identify any other ways of using the system to achieve the goal such as asking for a non-standard amount,
any optional facilities that may be offered to the user such as dispensing a receipt, and any problems that
could occur on the way to achieving the goal such as the card getting stuck.

You don’t need to capture all the flows at the same time. Whilst recording the basic flow it is natural to think
about other ways of achieving the goal, and what could go wrong at each step. You capture these as alternate
flows but concentrate on the basic flow first. You can then return to complete the alternate flows later as
and when they are needed.

This kind of bulleted outline may be enough to capture the work products and drive the development, or it
may need to be elaborated as the team explores the detail of what the system needs to do. The most
important thing is the additive structure of the use-case narrative. The basic flow is needed if the use case is
ever to be successfully completed; this must be implemented first. The alternatives though are optional. They
can be added to the basic flow as and when they are needed. This allows you to really focus on the value to
be obtained from the system. You no longer need to deliver the whole use case but can focus on those parts
of the use case that offer the most value. It also means that you don’t need a complete use-case model or
even a complete use case before you start to work on the development of the system. If you have identified
the most important use case and understood its basic flow then you already have something of value you
could add to your system.

This structure makes the work products easy to capture and validate for completeness, whilst making it easy
to filter out those potential ways of using a system that offer little or no real value to the users. This constant
focus on value will enable you to ensure that every release of your system is as small as possible, whilst
offering real value to the users of the system and the stakeholders that are funding the development.

Principle 4: Involve your stakeholders
Stakeholder involvement is essential: bring all the involved parties together to establish the intent and scope
of the system.

The success of use cases has been so widespread that the term use case has even entered common everyday
use. For example, the Meriam Webster on-line dictionary contains the following definition:

use case:
a use to which something (such as a proposed product or service) can be put

There are various use cases for the cloud: website hosting, disaster recovery, … etc.

● Users seem to want single-purpose mobile apps that nail a specific use case quickly.—Josh Constine

● The pandemic has pushed the adoption of technology for various use-cases.—businesswire.com

In fact, it’s rare for a new product to be launched these days without some reference to its use cases.

Imagine the concern it must provoke in those organizations where the leaders talk about one set of use cases
when publicizing the new system and the developers talk about a different set of use cases, or have no idea
what the intended use cases are, when they are building it.

It would be much better if everyone was on the same page – and ideally that page is a use case.

So involve your stakeholders in conceiving both the use-case model and the individual use cases, and keep
them involved in their evolution and implementation.

Use cases really are the best way to get everyone on the same page.

https://www.merriam-webster.com/dictionary/use%20case

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 18

Principle 5: Tell the whole story
A use case tells the whole story, as a story, from the initial event to the realization of the value it provides
or the eventual failure if it can’t be met. It includes how to handle any problems and alternatives that may
occur on the way.

Storytelling is how cultures survive and progress; it is the simplest and most effective way to pass knowledge
from one person to another. It is the best way to communicate what a system should do, and to get everybody
working on the system to focus on the same goals.

The use cases capture the goals of the system. To understand a use case we tell stories. The stories cover
how to successfully achieve the goal, and how to handle any problems that may occur on the way. Use cases
provide a way to identify and capture all the different but related stories in a simple but comprehensive way.
This enables the system’s requirements to be easily captured, shared and understood.

As a use case is focused on the achievement of a particular goal, it provides a focus for the storytelling. rather
than trying to describe the system in one go we can approach it use case by use case. The results of the story-
telling are captured and presented as part of the use-case narrative that accompanies each use case.

When using storytelling as a technique to communicate requirements it is essential to make sure that the stories
are captured in a way that makes them actionable and testable. A set of test cases accompanies each use-
case narrative to complete the use case’s description. The test cases are the most important part of a use
case’s description, more important even than the use-case narrative. This is because they make the stories
real, and their use can unambiguously demonstrate that the system is doing what it is supposed to do. It is
the test cases that define what it means to successfully implement the use case.

Principle 6: Trigger conversations
Use cases trigger conversations: while discussing the possible alternate flows, you and your co-writers will
think of missing steps and missing alternatives. These conversations help you find situations that often get
overlooked.

Use cases and use-case models are intended to trigger conversations – one of the most powerful things about
use cases is that they put the conversations into context.

We’ve already discussed how a simple outline of a use case will trigger conversations about the steps in the
use case and the coverage of the alternative flows.

Now you may think this sounds quite trivial and that these things are boring and easy to capture but bear this
in mind:

We were once running a use-case workshop for one of the world’s biggest banks who were in the
process of building a new platform for electronic funds transfer to help them seamlessly integrate all
the various banks they had been acquiring around the world.

As is not unusual at this kind of event the techies sat together on one table and all the business people
sat together on another. One of the introductory exercises we did was to outline the basic flow of the
Transfer Funds Use Case. A simple exercise you’d have thought but when it came time to share their
outlines the techies stood up and walked through the steps of their basic flow. Much to their, and our,
amazement the business people just started laughing. What could be so funny? They had just presented
the steps involved in the existing automated process for the main bank. Well, it turned out that they
were in the wrong order. “Do you know how many millions that has cost the bank?” asked the main
business sponsor.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 19

Well clearly they didn’t, as it was exactly what they had intended to implement in the new system.

Luckily the outline had triggered a new conversation and bought everyone involved much closer
together in their understanding of the intent of the new system.

Just as a use case can start a conversation about the ways that a user goal should be addressed, the use-case
model starts conversations about the scope of the system as a whole. For example, is there anything missing,
are we doing too much, is everything identified really needed, what do we need to have in place to go live,
what would be a good MVP (minimal viable product), are we talking to the right actors and so on. They can
also be used to trigger conversations with customers and to support the business case.

Principle 7: Prioritize readability
Prioritize readability: the goal is to communicate the big picture to everyone involved, generating
comments, spotting any gaps, and getting their buy-in.

It’s worth taking a few moments to think about how we typically present the requirements for our
development work.

On one hand we have the agile teams who like to capture everything on post it notes. This often results on a
huge number of small requests being captured and collected into a prioritized list. Individually these are small
and accessible but can make it very difficult to get an overview of what is being built, what has been achieved
so far and what there is left to do.

On the other hand, we have more waterfall projects where traditionally all the detailed requirements are
captured up front before development starts. This often results in the production of a huge impenetrable
document that takes hours to read and once again obscures the big picture.

Use cases done well hit the sweet spot in between these two extremes but you need to prioritize readability
in both the use-case model and the use cases. Even when, for legal or other reasons, you need to capture a
lot of detail in your use cases you should make sure that you keep them readable and start with a simple one
page overview of the flow of events.

Principle 8: Just enough, just in time
The amount of detail and the format used will vary to match your circumstances: You can start with a sketch
of the flow of events and add detail as needed.

Unfortunately, there is no ‘one size fits all’ solution to the challenges of system development; different teams
and different situations require different styles and different levels of detail. Regardless of which practices
and techniques you select you need to make sure that they are adaptable enough to meet the ongoing needs
of the team.

This applies to the practices you select to share your intent, capture your requirements and drive the
development as much as any others. For example, lightweight requirements are incredibly effective when
there is close collaboration with the users, and the development team can get personal explanations of the
requirements and timely answers to any questions that arise. If this kind of collaboration is not possible,
because the users are not available, then the requirements will require more detail and will inevitably become
more heavyweight. There are many other circumstances where a team might need to have more detailed
requirements as an input to development. However, what’s important is not listing all of the possible
circumstances where a lightweight approach might not be suitable but to acknowledge the fact that practices
need to scale.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 20

Use-Case 3.0 is designed with this in mind and is as light as you want it to be. Small, collaborative teams can
have very lightweight use-case narratives that capture the bare essentials of the requirements. These can be
handwritten on simple index cards. Large, distributed teams can have more detailed use-case narratives
presented as documents. It is up to the team to decide whether they need to go beyond the essentials, adding
detail in a natural fashion as they encounter problems that the bare essentials cannot cope with.

The structure of use cases also lends itself to adding the detail just-in-time at the last responsible moment.
For example, although we like to identify all the in-scope use cases up front we don’t need to detail their
flow of events unless they are needed. The same goes for the alternate flows, the detailing of these can be
deferred until we are going to work on them.

Principle 9: Implement in stages
A use case can be implemented in stages: develop and put into place some key flows of a use case early to
capture value and feedback, add less used or less critical flows over time strategically.

Most systems evolve through many generations. They are not produced in one go; they are constructed as a
series of releases - each building on the one before. Even the releases themselves are often not produced in
one go but are evolved through a series of increments. Each increment provides a demonstrable or usable
version of the system. Each increment builds on the previous increment to add more functionality or improve
the quality of what has come before. This is the way that all systems should be produced.

The use cases themselves can also be too much to consider delivering all at once. For example, we probably
don’t need all the ways of placing a local call in the very first increment of a telephone system. The most
basic facilities may be enough to get us up and running. The more optional or niche ways of placing a local
call such as reversing the charges or redialing the last number called can be added in later increments. By
slicing up the use cases we can achieve the finer grained control required to maximize the value in each
release.

FIGURE 10 shows the incremental development of a release of a system. The first increment only contains a
single slice: the first slice from use case 1. The second increment adds another slice from use case 1 and the
first slice from use case 2. Further slices are then added to create the third and fourth increments. The fourth
increment is considered complete and useful enough to be released.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 21

FIGURE 10: USE CASES, USE-CASE SLICES, INCREMENTS AND RELEASES

Use cases are a fabulous tool for release planning. Working at the use-case level allows whole swathes of
related requirements to be deferred until the later releases. by making decisions at the use-case level you
can quickly sketch out the big picture and use this to focus in on the areas of the system to be addressed in
the next release.

Use-case diagrams, showing which use cases are to be addressed in this release and which are to be left until
a later release, are a great tool for illustrating the team’s goals. They clearly show the theme of each release
and look great pinned up on the walls of your war-room for everybody to see.

Use-case slices are a fabulous tool for building smaller increments on the way to a complete release. They
allow you to target independently implementable and testable slices onto the increments ensuring that each
increment is larger than, and builds on, the one before.

Use-Case Slices: The most important part of Use-Case 3.0
The concept of a use-case slice is as integral to Use-Case 3.0 as the use case itself. It is the slices that enable
the use cases to be broken down and delivered in stages. Imagine that you are part of a small team producing
working software every two weeks. A whole use case is probably too much to be completed in one two-week
period. A use-case slice though is another matter because it can be sliced as thinly as the team requires. Use-
case slices also allow the team to focus on providing a valuable, usable system as soon as possible, shedding
all unnecessary requirements on the way.

A simple recipe for success
Applying our recipe above, the use cases identify the useful things that the system will do. Select the most
useful use case to find the most useful thing that the system does. To find the most central slice you will
need to shed all the less important ways of achieving the goal and handling problems. You can do this by
focusing on the basic flow. A slice based on the basic flow is guaranteed to travel through the entire concept
from end-to-end as it will be the most straightforward way for the user to achieve their goal.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 22

Estimate the slice and start to build it. Additional slices can then be taken from the use case until there are
enough slices to provide this particular user with a usable solution. The same can then be done for any other
use cases you need to complete a usable system.

Slicing up the use cases
The best way to find the right slices is to think about the flows and how we capture them. Each flow is a
potential slice. Each slice is defined by part of the use-case narrative and one or more of the accompanying
test cases. It is the test cases that are the most important part of the use-case slice’s description because
they make it a verifiable deliverable.

A use-case slice isn’t limited to a single flow – often a use-case slice will focus on a number of conceptually
related flows – for example handling all the potential card handling errors in our example cash withdrawal
use case. In fact we may create the slice before we know the details of exactly how many flows it will contain.

A use-case slice doesn’t need to contain an entire flow and all its test cases – the first slice might just be the
basic flow and one test case. Additional slices can then be added to complete the flow and address all the
test cases.

The slicing mechanism is very flexible enabling you to create slices as big or small as you need to drive the
incremental development of your system.

Principle 10: Build the system in slices
A system can be developed in slices where each slice is one or more paths through one of the system’s use
cases plus the relevant design, code and tests used to implement and verify them.

Most systems require a lot of work before they are usable and ready for operational use. They have many
requirements, most of which are dependent on other requirements being implemented before they can be
fulfilled, and value delivered. It is always a mistake to try to build such a system in one go. The system should
be built in slices, each of which has clear value to the users.

The recipe is quite simple. First, identify the most useful thing that the system must do and focus on that.
Then take that one thing and slice it into thinner slices. Decide on the test cases that represent acceptance
of those slices. Some of the slices will have questions that can’t be answered. Put those aside for the moment.
Choose the most central slice that travels through the entire concept from end to end, or as close to that as
possible. Estimate it as a team (estimates don’t have to be “right”, they’re just estimates), and start building
it.

This is the approach taken by Use-Case 3.0, where the use cases are sliced up to provide direction to the
team, and where the system itself is evolved slice by slice.

The slices are more than just requirements and test cases
When we build the system in slices it is not enough to just slice up the requirements. Although use cases have
traditionally been used to help understand and capture requirements, they have always been about more
than this. As shown in FIGURE 11, the use-case slices slice through more than just the requirements, they also
slice through all the other aspects of the system and its documentation.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 23

FIGURE 11: A USE-CASE SLICE IS MORE THAN JUST A SLICE OF THE USE CASE

On the left of FIGURE 11 you can see the use-case slice, this is a slice taken from one of the use cases shown
in the next column. The slice then continues through the design showing the design elements involved, and
through the implementation where you can see which pieces of the code implement the slice. Finally, the
slice cuts through the test assets, not just encompassing the test cases, but also the test scripts used to
execute the test cases and the test results generated.

As well as providing traceability from the requirements to the code and tests, thinking of the slices in this
way helps you develop the right system. When you come to implement a slice, you need to understand the
impact that the slice will have on the design and implementation of the system. Does it need new system
elements to be introduced? Can it be implemented by just making changes to the existing elements? If the
impact is too great you may even decide not to implement the slice! If you have the basic design for the
system this kind of analysis can be done easily and quickly and provides a great way to understand the impact
of adding the slice to the system.

By addressing each aspect of the system slice by slice, use cases help with all the different areas of the system
including user experience (user interface), architecture, testing, and planning. They provide a way to link the
requirements to the parts of the system that implement them, the tests used to verify that the requirements
have been implemented successfully, and the release and project plans that direct the development work. In
Use-Case 3.0 there is a special construct, called the use-case realization, which is added to each use case to
record its impact on the other aspects of the system.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 24

Use-Case 3.0 Content
This section considers Use-Case 3.0 as a whole. The specific practices are available here.

Use-Case 3.0 consists of a set of things to work with and a set of things to do.

Things to Work With
The subject of Use-Case 3.0 is the requirements, the system to be developed to meet the requirements, and
the tests used to demonstrate that the system meets the requirements. At the heart of Use-Case 3.0 are the
use case and the use-case slice. These capture the requirements and drive the development of the system.
Figure 5 shows how these concepts are related to each other. It also shows how changes and defects impact
on the use of Use-Case 3.0.

FIGURE 12: USE-CASE 3.0 CONCEPT MAP

STAKEHOLDERS

REQUIREMENTS

SYSTEM

USE CASE

USE-CASE SLICECHANGE TEST

WORK ITEM
(such as User Stories,

Features or Tasks)

MAY ASK FOR

ARE THE
SOURCE OF

DEFINE THE
INTENT OF

CAPTURED AS

SCOPE AND GOALS
MODELED AS A SET OF

SCOPE MANAGED
AND ADDRESSED

AS A SET OF

MAY
REQUIRE

NEW

DISCUSS AND
PRIORITIZE

ADD OR
CHANGE

DRIVE THE
DEVELOPMENT OF

VERIFY THE
QUALITY AND

COMPLETENESS
OF

VERIFY THE
IMPLEMENTATION OF

FIND
PREVENT THE

COMPLETION OF

FIXED BY
IMPROVING

DEFECT

RESULTS IN 1 OR
MORE

ACTION IMPLEMENT
AND RUN

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 25

The stakeholders are the people, groups, or organizations who affect or are affected by a software system.
The requirements are what the system must do to satisfy the stakeholders. It is important to discover what is
needed from the software system, share this understanding among the stakeholders and the team members,
and use it to drive the development of the new system. In Use-Case 3.0 the requirements are captured as a
set of use cases, which are scope managed and addressed as a set of use-case slices. Any changes requested
by the stakeholders result in additions or changes to the set of use cases and use-case slices.

The system is the system to be built. It is typically a software system although Use-Case 3.0 can also be used
in the development of new businesses (where you treat the business itself as a system), and combined
hardware and software systems (embedded systems). It is the system that implements the requirements and
is the subject of the use-case model. The quality and completeness of the system is verified by a set of tests.
The tests also verify whether the implementation of the use-case slices has been a success. If defects are
found during testing, then their presence will prevent the completion of the use-case slice until they have
been fixed and the system improved.

Storytelling and on-going conversations bridge the gap between the stakeholders, the use cases, and the use-
case slices. It is how the stakeholders communicate their requirements and explore the use cases.

To create an actionable plan to implement a use case it typically needs to be broken up into small, actionable
pieces of work that can be given to an individual or team to complete.

Most of the use-case slices will require multiple work items to be completed to complete their development
and testing. Common forms of work item used to implement a use-case slice include User Stories, Features
and Tasks.

For example:
when working in an agile environment and implementing a slice that covers multiple steps in a flow of events
then you might implement each step individually as a separate User Story.
when working in a more traditional environment you may wish to create a series of tasks – design, code, unit
test, system test – for each slice to allocate to the various team members.

Note: if the use-case slice is simple and straight forward enough to be easily implemented and tested within
a couple of days then there may only be the need to create a single work item.

This separation of concerns allows you to seamlessly use Use-Case 3.0 to complement the way that your
development team currently works. Benefiting from the power of use cases with minimal disruption to your
team.

Use Cases
A use case is all the ways of using a system to achieve a goal of a particular user. Taken together the set of all
the use cases gives us all of the useful ways to use the system.

A use case is:

● A sequence of actions a system performs that yields an observable result of value to a particular
user.

● The specific behavior of a system which participates in a collaboration with a user to deliver
something of value for that user.

● A collection of all the successful, challenged and failure paths.

● The smallest unit of activity that provides a meaningful result to the user.

● The context for a set of related conversations and requirements.

● Independent of implementation, technology, and platform.

● Described textually and / or visually.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 26

To understand a use case, we describe it as a network of flows. The flows cover both how to successfully achieve
the goal and how to handle any problems that occur on the way. They help us to understand the use case and
implement it slice by slice.

As FIGURE 13 shows, a use case undergoes several state changes from its initial

identification through to its fulfillment by the system. The states constitute
important way points in the understanding and implementation of the use case
indicating:

1. Goal Established: the goal of the use case has been established and
its value is clear.

2. Flow Structure Understood: the structure of the use-case’s flow of
events has been understood enough for the team to start work
identifying and implementing the first use-case slices.

3. Basic Flow Enabled: when the use case’s basic flow can be
successfully traversed (using the system itself) from beginning to
end.

4. Sufficient Flows Fulfilled: the system fulfills enough of the use case’s
flows to provide a usable solution.

5. All Flows Fulfilled: when the system fulfills all the use case’s flows
and delivers all the ways of using the system to achieve the user’s
goals.

This will be achieved by implementing the use case slice-by-slice. The states
provide a simple way assess the progress you are making in understanding and
implementing the use case.

GOAL ESTABLISHED

FLOW STRUCTURE
UNDERSTOOD

BASIC FLOW
ENABLED

SUFFICIENT FLOWS
FULFILLED

ALL FLOWS
FULFILLED

FIGURE 13: THE LIFECYCLE
OF A USE CASE

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 27

Use-Case Slices
A slice of a use case that provides clear value to the user or other stakeholders. Typically, a use-case slice
captures one of the ways of using a system to achieve a goal.

Use cases cover all the ways of achieving a goal of a particular actor. These will be of varying importance and
priority. There are often too many flows to deliver in a single release and generally too many to work on in a
single increment. Because of this we need a way to divide the use case into smaller slices of value that 1)
allow us to deliver the use case in stages whilst ensuring that each stage is usable and valuable, 2) provide a
suitable unit for development and testing by the development team, and 3) allow us to have small and
similarly sized slices of value that flow quickly through development.

A use-case slice captures one or more paths through a use case that are of clear value to the customer. They
act as a placeholder for all the work required to deliver the value implicit in the slice. As we saw earlier when
we discussed how the use-case slices are more than just requirements and test cases, the use-case slice
evolves to include the corresponding slices through design, implementation, and test.

The use-case slice is the most important element of Use-Case 3.0, as it is not only used to help with the
requirements but to drive the development of a system to fulfill them.

Each use-case slice:

● Is always ‘end-to-end’. It starts at the beginning of the use-case and ends at its end.

● Traverse one or more of the use-case’s flows.

● Is always testable and complement the flow of events with explicit test cases.

● Enables use cases to be broken up into smaller, independently deliverable units of clear value.

● Enables the requirements contained in a set of use cases to be ordered, prioritized, and addressed in
parallel.

● Links the different system models (requirements, analysis, design, implementation, and test) used
in use-case driven development.

As FIGURE 14 shows, a use-case slice undergoes several state changes from its
initial identification through to its final acceptance. The states constitute
important way points in the understanding, implementation and testing of the
use-case slice indicating:

1. Identified: the slice has been scoped and the extent of the flows and
other requirements covered is known.

2. Defined: the extent of the slice has been clarified by identifying the
paths through the use case and how they would be verified. This is
done by elaborating the flow of events and identifying a set of test
cases to clearly define what it means to successfully implement the
slice.

3. Analyzed: the slice has been analyzed so its impact on the
components of the system is understood.

4. Prepared: the work items required to deliver an implementation of
the slice have been quantified and added to a team’s backlog and /
or plans.

5. Implemented: the software system has been enhanced to implement the slice and the slice is
ready for testing.

6. Verified: the slice has been verified as done and is ready for inclusion in a release.

IDENTIFIED

DEFINED

ANALYZED

PREPARED

IMPLEMENTED

VERIFIED

FIGURE 14: THE LIFECYCLE
OF A USE-CASE SLICE

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 28

The states provide a simple way to assess the progress you are making in understanding and implementing
the use-case slices. They also denote the points when the slice is at rest and could potentially be handed over
from one person or team to another. To the casual observer glancing at the states, this might look like a
waterfall process: identification >definition > analysis > implementation > verification. There’s a big
difference, though. In a waterfall approach, all the requirements are prepared before the analysis starts, and
all the analysis is completed before the implementation starts, and all the implementation is completed
before the verification starts. Here we are dealing with an individual use-case slice. Across the set of slices
all the activities could be going on in parallel. While one use-case slice is being verified, another use-case
slice is being implemented, a third is being prepared, and a fourth being analyzed. In the next chapter we
will explore this more when we look at using Use-Case 3.0 with different development approaches.

Why Use Cases, Use-Case Slices and Flows?
A use case is all the ways of using a system to achieve a goal of a particular user.

All these ways, both successful and unsuccessful, are captured in the use case’s flow of events. This provides
a map of all the ways of using the system when conducting the use case, and just like a map there are many
possible paths through the flow of events.

The use case always starts with the user doing something that the system can detect. This is the first step of
the basic flow and the first step of all the paths through the use case. Regardless of the path through the use
case we always end up at the final step of the basic flow where the use case ends.

FIGURE 15 illustrates how even for a simple use case with just a few flows there are an exponentially greater
number of paths through the use case.

FIGURE 15: THERE ARE MANY PATHS THROUGH A USE CASE

On the left of the figure the basic flow is shown as a linear sequence of steps and the alternative flows are shown as
detours from this set of steps. The alternative flows are always defined as variations on the basic flow. On
the right of the diagram some of the paths through the use case are shown. Each path traverses one or more
flows starting with the first step of the basic flow and terminating with the use case at the end of the basic

Start of use case

End of use case

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Alt 1

Alt 2

Alt 3

Alt 4

1 Use Case
Many successful paths and… many unsuccessful paths…

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 29

flow. This ensures that all the paths are related to the achievement of the same goal, are complete and
meaningful, and are complementary as they all build upon the simple story described by the basic flow. For
each path there will be one or more test cases.

The key to finding effective slices is to understand the structure of the use case and then to group the paths and
their test cases into meaningful slices of value that can be used to 1) conduct the implementation on the use
case in stages and 2) to scope manage the use case and focus on the quick delivery of value. The smallest a
slice can be is a single test case traversing a single path through the use case. For example, it might be too
much to start with the whole of the basic flow and you may choose to start with a single end-to-end test case
and an experimental solution with hard coded values and no error handling.

FIGURE 16: SLICING A USE CASE

FIGURE 16 illustrates one way of slicing up the use case with the first slice demonstrating the basic flow, the
second slice completing the basic flow and alt1, the third slice addressing the other alternate flows and the
fourth handling exceptions that can’t be addressed in collaboration with the user.

Note: Slices can be functional or non-functional in nature. For example, we could create additional slices to
address performance and / or loading requirements. These wouldn’t require new flows but would be
additional slices with additional test cases.

There are two common approaches to identifying the use-case’s flow of events and create their use-case
slices:

Top Down: Some people like to take a top-down approach where they 1) identify the use case, 2) outline the steps of the

basic flow, and 3) brain-storm alternative flows based on the basic flow. This structures the use case and allows
them to identify their slices.

Bottom Up: Using the bottom-up approach, we start by brainstorming some user goals and / or user stories and then

grouping these by theme to identify our use cases. The input ideas are then examined to help us identify the basic,
and some of the alternative, flows. The use-case structure then leads us to identify any flows or steps, and make
sure that all the flows are well-formed and complementary.

You should pick the approach that works best for your stakeholders. You can of course combine the two

Start of use case

End of use case

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Alt 1

Alt 2

Alt 3

Alt 4

1 Use Case Many successful paths and… many unsuccessful paths…

Slice 1 Slice 2 Slice 3 Slice 4

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 30

approaches and work both top-down, from your use cases, and bottom up from any suggested new user stories
or change requests.

Defects and Changes
Although not a direct part of Use-Case 3.0, it is important to understand how defects and changes are related
to the use cases and the use-case slices.

Changes requested by the stakeholders are analyzed against the current use-case model, use cases, and use-
case slices. This enables the extent of the change to be quickly understood. For example, adding a new use case to
the system is a major change as it changes the system’s overall goals and purpose; whereas a change to an
existing use case is typically much smaller, particularly if it is to a flow that has not been allocated to a slice
and analyzed, prepared, implemented or verified.

Defects are handled by tracking which use-case slices, and by implication which test cases, resulted in their
detection. If they are found during the implementation or verification of a use-case slice, then that slice
cannot advance until the defect is addressed and the test can be passed. If they are found later during
regression testing then the relationship between the failed test cases and the use cases allows you to quickly discern
what impact the defect will have on the users and the usability of the system.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 31

Work Products
The use cases and the use-case slices are supported by a number of work products that the team uses to help
share, understand, and document them. FIGURE 17 shows the five Use-Case 3.0 work products (in light yellow with
gray borders) and their relationships to the requirements, use cases, use-case slices, tests, and the system (in
dark yellow)

FIGURE 17: THE USE-CASE 3.0 WORK PRODUCTS

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 32

The use-case model visualizes the requirements as a set of use cases, providing an overall big picture of the
system to be built. The model defines the use cases and provides the context for the elaboration of the individual
use cases. The use cases are explored by outlining and discussing the flow of events and any constraints that apply to
them. Each use case is described by 1) a use-case narrative that outlines its flows and constraints (such as
standards, quality, or performance requirements) and 2) a set of test cases that will be used to verify the use-
case and the requirements it captures. Use-Case Slices are used to stage the description, analysis,
implementation and testing of the use case.

The use-case model is complemented by supporting information. This captures the definitions of the terms
used in the use-case model and when outlining the flows and constraints in the use-case narratives. It also
captures any system-wide requirements: those requirements that apply to all the use cases. Again, these will
influence the slices selected from the use cases and be assigned to the use-case slices for implementation.

You may be disconcerted by the lack of any explicit work products to capture and document the use-case slices. These
are not needed as they are fully documented by the other work products. If required, you can list the slices
related to a use case as an extra section in the use-case narrative but this is not essential.

Working with the use cases and use-case slices
As well as creating and tracking the work products, you will also need to track the states and properties of
the use cases and the use-case slices. This can be done in many ways and in many tools. The states can be
tracked very simply using post-it notes or spreadsheets. If more formality is required one of the many commercially
available application lifecycle management, work management, requirements management, change management or
defect tracking tools could be used. FIGURE 18 shows a use case and some of its slices captured on a set of sticky
notes.

FIGURE 18: CAPTURING THE PROPERTIES OF A USE CASE AND ITS SLICES USING STICKY NOTES

The use case shown is use-case ‘Browse and Shop’ from an on-line shopping application. Slices 1 and 2 of the
use case are derived from the basic flow: ‘Select and buy 1 Product’ and ‘Select and buy 100 Products’. Slice
3 is based on multiple flows covering the availability of the various support systems involved in the use case.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 33

The essential properties for a use case are its name, state, and priority. In this case the popular MoSCoW
(Must, Should, Could, Would) prioritization scheme has been used. The use cases should also be estimated. In
this case a simple scheme of assessing their relative size and complexity has been used.

The essential properties for a use-case slice are 1) a meaningful name, 2) references to the use case and the
flows it covers, 3) references to the tests and test cases that will be used to verify its completion, and 4) an
estimate of the work needed to implement and test the slice. In this example the reference to the use case
is implicit in the slices number and list of flows. The estimates have been added later after consultation with the
team. These are the large numbers towards the bottom right of each sticky note. In this case the team has played
planning poker to create relative estimates using story points; 5 story points for slices 7.1 and 7.2, and 13
story points for slice 7.3 which the team believe will take more than twice the effort of the other slices.
Alternatively ideal days, t-shirt sizing (XS, S, M, l, Xl, XXl, XXXl), or any other popular estimating technique could
be used.

The use cases and the use-case slices should also be ordered so that the most important ones are addressed
first. FIGURE 19 shows how these sticky notes can be used to build a simple product back log on a white board.
Reading from left to right you can see 1) the big picture illustrated by use-case diagrams showing the scope
of the complete system and the first release, 2) the use cases selected for the first release and some of their
slices which have been identified but not yet detailed and ordered, 3) the ordered list of slices ready to be
developed in the release and finally 4) those slices that the team have successfully implemented and verified.

FIGURE 19: USING USE CASES AND USE-CASE SLICES TO BUILD A PRODUCT BACKLOG

FIGURE 19 is included for illustrative purposes only, there are many other ways to organize and work with your
requirements. For example, many teams worry about their sticky notes falling off the whiteboard. These
teams often track the state of their use cases and use-case slices using a simple spreadsheet including work-
sheets such as those shown in FIGURE 20 and FIGURE 21.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 34

FIGURE 20: THE USE-CASE WORKSHEET FROM A SIMPLE USE-CASE TRACKER

FIGURE 21: THE USE-CASE SLICE WORKSHEET FROM A SIMPLE USE CASE TRACKER

These illustrations are included to help you get started. The use cases and the use-case slices are central to
everything the team does, so use whatever techniques you need to make them tangible and visible to the
team. Feel free to add other attributes as and when you need them, for example to record the source of the
use case or its owner, or to target the use-case slices on a particular increment within the release.

Completing the Work Products
As well as tracking the use cases and the use-case slices you will need to, at least, sketch out and share the
supporting work products.

All the work products are defined with a number of levels of detail. The most important level of detail defines
the essentials, the minimal amount of information that is required for the practice to work. Further levels of
detail help the team cope with any special circumstances they might encounter. For example, this allows
small, collaborative teams to have very lightweight use-case narratives defined on simple index cards and
large distributed teams to have more detailed use-case narratives presented as documents. The teams can
then grow the narratives as needed to help with communication, or thoroughly define the important or safety
critical requirements. It is up to the team to decide whether they need to go beyond the essentials, adding
detail in a natural fashion as they encounter problems that the bare essentials cannot cope with.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 35

In some cases there will be an additional level of detail that is used to establish a sketch of the work product
prior to the completion of the essentials. For example a use case narrative may be briefly described when
the use case if found and then further evolved to create the bulleted outline once it is decided that the use
case is in scope.

FIGURE 22 shows the levels of detail defined for the set of Use-Case 3.0 work products. The lightest level of
detail is shown at the top of the table. The amount of detail in the work product increases as you go down
the columns enhancing and expanding the content.

FIGURE 22: WORK PRODUCT LEVELS OF DETAIL

The good news is that you always start in the same way, with a sketch that evolves cover the essentials. The
team can then continually adapt the level of detail in their use-case narratives to meet their emerging needs.
The level of detail can also be adjusted to reduce waste; anything beyond the essentials should have a clear
reason for existing or be eliminated. As Einstein (is attributed to have) said “Everything should be made as
simple as possible, but not simpler”.

For more information on the work products and their levels of detail see Appendix 1: Work Products.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 36

Things to do
Use-Case 3.0 breaks the work up into a number of essential activities that need to be done if the use cases
are to provide real value to the team. These activities are shown in FIGURE 23 where they are grouped into those
activities used to discover, order and verify the requirements, and those used to shape, implement and test
the system. The solid chevrons indicate activities that are explicitly defined by Use-Case 3.0. The dashed
chevrons are placeholders for other activities that the practice depends on to be successful. Use-Case 3.0
does not care how these activities are performed, it just needs them to be done.

FIGURE 23: THE ACTIVITIES IN USE-CASE 3.0

Read FIGURE 23 from left to right to get an impression of the order in which the activities are first performed.
The activities themselves will all be performed many times in the course of your work. Even a simple activity
such as ‘Find Actors and Use Cases’ may need to be performed many times to find all the use cases, and may
be conducted in parallel with, or after, the other activities. For example, whilst continuing to ‘Find Actors
and Use Cases’ you may also be implementing some of the slices from those use cases found earlier.

The rest of this chapter introduces each of the activities, following the journey of a use-case slice from the
initial identification of its parent use case through to its final testing and inspection. The next chapter includes
a brief discussion on how to organize the activities to support different development approaches such as Scrum,
Kanban, Iterative and Waterfall.

TO SHAPE, IMPLEMENT AND TEST THE SYSTEM SLICE-BY-SLICE

FIND ACTORS
AND USE CASES

DISCUSS AND SLICE
A USE CASE

INSPECT AND ADAPT
THE USE CASES

TEST THE SYSTEM
(AS A WHOLE)

ANALYZE A
USE-CASE SLICE

PREPARE A
USE-CASE SLICE

IMPLEMENT SOFTWARE
(FOR A SLICE)

TEST THE SYSTEM
(AS A WHOLE)

TO DISCOVER, ORDER AND VERIFY THE REQUIREMENTS

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 37

Find Actors and Use Cases
First you need to find some actors and use cases to help you to:

● Agree on the goals of the system.

● Agree on new system behavior.

● Scope releases of the system.

● Agree on the value the system provides.

● Identify ways of using and testing the system.

The best way to do this is to hold a use-case modeling workshop
with your stakeholders. There is no need to find all the system’s
use cases, just focus on those that are going to provide the
stakeholders with the value they are looking for. Other actors and
use cases will be found as you inspect and adapt the use cases.

As the use cases are discovered they should be ordered to
support the team’s release plans. One of the great things about use
cases is that they enable high-level scope management without
the need to discover or author all the use-cases' flows or slices. If
a use case isn’t needed, then there is no need to discuss or
document its flows or slices. If the use case is in scope, it should
be outlined so that there is enough information to start the slicing
process.

Repeat this activity as necessary to evolve your model and find any missing actors or use cases.

TIP: MODEL STORM TO KICK START YOUR
USE-CASE MODEL

The formal nature of the use-case model,
and its use of the Unified Modeling Language,
can be a barrier to involving stakeholders
in the modelling effort.

A great way to overcome this is to simply
get the stakeholders together to
brainstorm some different users and
their goals using sticky-notes (vertical for
users and horizontal for goals.) Then
facilitate the grouping of these into actors
and use cases, which the stakeholders will
then find very easy to quantify, outline, and
order.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 38

Discuss and Slice a Use Case
Next you need to build your understanding of the use case and
create your first use-case slices. You do this to:

● Align on the scope of the use case and its flow of
events.

● Create suitably sized items for the team to work on.

● Fit within the time and budget available.

● Deliver the highest value to the users, and other
stakeholders.

● Demonstrate critical project progress or
understanding of needs.

Even the simplest use case will cover many flows and many
paths to value. You need to slice the use case to select the flows
to be implemented. You should do the slicing with your
stakeholders to make sure that all the slices created are of
value and worth implementing. Don’t slice up all the use cases
at once. Just focus on the use cases to be worked in immediately.

You don’t need to completely slice up the use case, just pull
out the slices that are needed to progress the work and leave
the rest of the use case for slicing when and if it is needed. You
can even adopt a pull model where the developers ask for new
slices to be identified as and when they have the capacity to
implement them.

The slices created should be sequenced for delivery to make
sure the development team tackles them in the right order. Again,
you should do this with your stakeholders and other team
members to make sure that the ordering defines the smallest
usable system possible. The best way to do this is to consider the combination of priority, value, risk, and necessity.

Repeat this activity whenever new slices are needed.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 39

Analyze a Use-Case Slice
Before you commit to doing the work and start coding you
should analyze the slice to:

● Understand its impact on the system elements that
will be used to implement it.

● Define the responsibilities of the affected system
elements.

● Define how the system elements interact to perform
the use case.

When a team is presented with a new slice to implement the
first thing to do is to work out how it will affect the system.
How many bits of the system are going to need to be changed
and in what way? How many new things are needed and where
do they fit?

Analyzing the target slices is often a pre-cursor to the planning
of the development tasks. It allows the team to plan the
implementation of the slice as a set of smaller code changes
rather than as one, large, indivisible piece of work. Alternatively, the slice itself can be used as the unit of
work and analyzing the slice is just the final thing to be undertaken by the developer before the coding starts.

As the team build their understanding of the system and its architecture, they will find it easier and easier to
analyze the slices and will often be able to do it in their heads. It is still worth sketching the analysis out with
some colleagues before committing to the coding. This will validate a lot of the design decisions, check that
nothing has been misunderstood, and provide traceability for use later when investigating the impact of
defects and changes. The result of this kind of analysis is known as a use-case realization as it shows how the
use case is realized by the elements of the implementing system.

Perform this activity at least once for each slice. Repeat this activity whenever there are changes applied to
the slice.

TIP: KEEP THE ANALYSIS COLLABORATIVE
AND LIGHTWEIGHT

The easiest way to analyze the use-case slice
is to get the team together to discuss how it
would affect the various elements of the
system.

As the team walks-through the design they
picture it on a white board, typically in the
form of a simple sequence or collaboration
diagram, which can then be captured as a
photograph or in the team’s chosen
modelling tool.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 40

Prepare a Use-Case Slice
Once a slice is selected for development more work is required
to:

● Get it ready for implementation.

● Clearly define what it means to successfully
implement the slice.

● Define required characteristics (i.e. non-functional
requirements).

● Focus the development of software towards the tests
it must meet.

● Split it up into a set of smaller work items (for
example, user stories, features, or tasks) that can be
integrated into the team’s backlog and plans.

Preparing a use-case slice is a collaborative activity, you need
input from the stakeholders, developers, and testers to clarify
the use-case narrative and define the test cases. When
preparing a use-case slice you should focus on the needs of the
developers and testers who will implement and verify the slice.

Think about how they will access the information they need. Will
they be able to talk to subject matter experts to flesh out the
requirements, or will they need everything to be documented
for them? You also need to balance the work between the
detailing of the use-case narrative and the detailing of the test
cases. The more detail you put in the use-case narrative the
easier it will be to create the test cases. On the other hand the
lighter the use-case narrative the less duplication and repetition
there will be between it and the test cases. You should create
the use-case narrative and the test cases at the same time, so
that the authors can balance their own needs, and those of their
stakeholders.

Think about how to split the work up into a set of smaller work
items (for example, User Stories, Features, or Tasks) that can be
integrated into the team’s backlog and plans. For example, the
slice will probably touch on many of the system’s components or
span many steps. In both cases it may be possible for each of these
changes to be done independently or in parallel. The end-to-end
testing of the slice will make sure that everything is pulled together
and integrated before the slice is considered done.

Perform this activity at least once for each slice. Repeat this
activity whenever there are changes applied to the slice.

TIP: FOR AGILE TEAMS SPLIT THE SLICE UP INTO
A SET OF SMALL, ACTIONABLE USER STORIES

Use-Case Slices generally involve many steps
and changes to many different parts of the
system because of this they usually require
more than a few days effort to complete. This
makes them too large to meet the definition
of ready used by many Agile teams particularly
those used to using User Stories.

The good news is that Use-Case Slices can
easily be split up into a set of User Stories –
for example each step can be presented as
a User Story. For example Step 1: As a
customer I want to withdraw a standard
amount of cash so that I can go shopping,
Step 2: As a Bank I want to check that the
funds are available so that the customer
does not go overdrawn. The same logic can
also be applied to each alternative flow; for
example Alt 1: As a Bank I want to offer
Customers in good standing an overdraft if
they have insufficient funds to fulfill their
requested withdrawal so that they are happy
with our service.

The Use-Case Slice can then act as the team
goal.

TIP: IF THE SLICE HAS NO TEST CASES, THEN IT
HAS NOT BEEN PROPERLY PREPARED

When you prepare a use-case slice do not
forget to define the test cases that will be
used to verify it. It is by looking at the test
cases that we know what really needs to be
achieved.

The test cases provide the developers with
an empirical statement of what the system
needs to do. They will know that the
development of the slice is not completed
until the system successfully passes all the
test cases.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 41

Implement Software (for a Slice)
You are now ready to design, code, unit test, and integrate the software components needed to implement
a use-case slice.

The software will be developed slice-by-slice, with different team members working in parallel on different
components or related work items. Each slice will require changes to one or more pieces of the system. To
complete the implementation of a slice the resulting pieces of software will have to be unit tested and then
integrated with the rest of the system.

Test the System (for a Slice)
Next, independently test the software to verify that the use-case slice has been implemented successfully.
Each use-case slice needs to be tested before it can be considered complete and verified. This is done by
successfully executing the slice’s test cases. The independence of the use-case slices enables you to test it
as soon as it is implemented and provide immediate feedback to the developers.

Use-case 3.0 works with most popular testing practices. It can be considered a form of test-driven
development as it creates the test cases for each slice before the slice is given to the developers for
implementation.

Test the System as a Whole
Each increment of the software system needs to be tested to verify that it correctly implements all the new
use-case slices without breaking any other parts of the system. It is not sufficient to just test each slice as it
is completed. The team must also test the system as a whole to make sure that all of the implemented slices
are compatible, and that the changes to the system haven’t resulted in the system failing to support any
previously verified slices.

The test cases produced using Use-Case 3.0 are robust and resilient. This is because the structure of the use-
case narratives results in independently executable, scenario-based test cases.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 42

Inspect and Adapt the Use Cases
You also need to continuously tune and evaluate the use-case
model, use cases, and use-case slices to:

● Handle changes.

● Track progress.

● Fit your work within the time and budget available.

● Keep the use-case model up to date.

● Tune the size of the slices to increase throughput.

As the work progresses it is essential that you continually
evolve your use-case model, use cases and use-case slices.
Priorities change, lessons are learnt, and changes are
requested. These can all have an impact on the use cases and
use-case slices that have already been implemented, as well
as those still waiting to be progressed. This activity will often
lead to the discovery of new use cases and the refactoring of
the existing use cases and use-case slices.

The varying demands of the project may need you to tune your
use of Use-Case 3.0 and adjust the size of the slices or the
level of detail in your use-case narratives, supporting
information and test cases. It is important that you continually
inspect and adapt your way-of-working as well as the use cases and use-case slices you are working with.

Perform this activity as needed to maintain your use cases and handle changes.

TIP: DON’T FORGET TO MAINTAIN YOUR
BACKLOG OF USE-CASE SLICES

By ordering your slices and tracking their
state (defined, analyzed, prepared,
implemented, verified) you create a backlog
of the requirements left to implement. This
list should be continually monitored and
adjusted to reflect the progress of the team
and the desires of the stakeholders.

As the work progresses you should monitor
and adjust the slice size to eliminate waste
and improve the team’s effectiveness.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 43

Practices

Introducing the Use-Case 3.0 Practice Family
Over the years use-case practitioners have found many ways to benefit from the use of use cases in many
different domains and problem spaces.

This widespread adoption of use cases has led to many different use-cases for use cases themselves including:

● Focus on delivering end-to-end value by focusing on the most critical use cases.

● Visually summarize what a system does for its users.

● Provide a permanent record of what a system does.

● Formally drive the development of a system.

In the first two cases people have typically been using either the occasional use-case narratives or a stand-
alone use-case models to provide context for, and help, identify User Stories.

To help facilitate the different ways that use cases can be used this e-book is now supported by a set of
Essence practices. FIGURE 24 shows the full set of practices. These provide you with a selection of lightweight
starting points that can then be extended to add structure and formality as and when it is needed. They have
been designed to support these common use cases and adapt to any others that may emerge.

FIGURE 24: THE USE-CASE 3.0 PRACTICE FAMILY

With Use Case 3.0 you can start your use case journey from any combination of the two essential use-case
practices:

● Use-Case Storytelling - the use of simple use-case narratives to help teams focus on delivering a
usable system of clear value to its users.

● Light Use-Case Modelling - the creation of a use-case model that visualizes the value of a system
and how it helps the users achieve their goals.

● Use-Case Essentials: A combination of Use-Case Storytelling and Light Use-Case Modeling.
Combining the two essential use-case practices gives you both a use-case model and its supporting
narratives to drive the development of a system and act as its permanent record.

You can then add additional content as you continue your use-case journey by selecting additional use case

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 44

3.0 practices. For example - if needed, you can apply the detailed Use-Case Authoring practice to provide
more detail to your use-case narratives and supporting information. You can add Use-Case Realization to
create design artefacts such as sequence and collaboration diagrams. You can add Structured Use-Case
Modeling with supporting use cases and additional modeling conventions to allow you to cover the full scope
of your intended system.

You can of course use Use-Case 3.0 in its entirety, as shown in FIGURE 25 and discussed in the previous section,
but as you can see that’s quite a lot to take on in one go particularly if you have never used use cases before.

FIGURE 25: AN OVERVIEW OF USE-CASE 3.0

In the following sections we will look at each practice in turn and some of the more common combinations of
these and other practices.

VALUE ESTABLISHED

SYSTEM BOUNDARY
ESTABLISHED

STRUCTURED

BULLETED OUTLINE

ESSENTIAL OUTLINE

FULLY DESCRIBED

BRIEFLY DESCRIBED

IMPLEMENTATION
ELEMENTS IDENTIFIED

RESPONSIBILITIES
ALLOCATED

INTERACTION
DEFINED

SCENARIO CHOSEN

VARIABLES
IDENTIFIED

VARIBLES SET

TEST IDEAS
FORMULATED

SCRIPTED
/ AUTOMATED

SIMPLY DEFINED

MODELLED
& ILLUSTRATED

COMPREHENSIVELY
DEFINED

NOTES TAKEN

SUPPORTING
INFORMATION

USE-CASE
NARRATIVE

USE-CASE
MODEL

TEST CASEUSE-CASE
REALIZATION

DEFINITIONS

SYSTEM-WIDE
REQUIREMENTS

USE CASE

GOAL
ESTABLISHED

FLOW STRUCTURE
UNDERSTOOD

BASIC FLOW
ENABLED

SUFFICIENT FLOWS
FULFILLED

ALL FLOWS
FULFILLED

FLOW OF
EVENTS

CONSTRAINTS

SKETCH:

BARE ESSENTIALS:

ENHANCED:

EXPANDED:

FURTHER EXPANDED:

DOCUMENTED BY

FIND ACTORS

AND USE CASES

to Understand
the Requirements

DISCUSS AND SLICE

A USE CASE

to Understands the
Requirements

INSPECT AND ADAPT

THE USE CASES

(to Test the System
and Understand the

Requirements

TEST

THE SYSTEM

(as a whole)

ANALYZE A

USE-CASE SLICE

to Understands
the Requirements

and Shape the
System

PREPARE A

USE-CASE SLICE

to understands the
Requirements and

Coordinate Activity

IMPLEMENT SOFTWARE

(for a slice)

TEST THE SYSTEM

(for a slice)

UNDERSTAND

STAKEHOLDER

NEEDS

DEPLOY

THE

SYSTEM

USE THE SYSTEM

DRIVES

USE-CASE SLICE

IDENTIFIED

DEFINED

ANALYZED

PREPARED

IMPLEMENTED

VERIFIED

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 45

Use-Case Foundation
The foundational concepts and principles that underlie all successful applications of Use Cases.

FIGURE 26: AN OVERVIEW OF THE USE-CASE FOUNDATION

This practice is based on the Use-Case Foundation published by Ivar Jacobson and Alistair Cockburn in 2024.

Use-Case 3.0 Foundation
The foundational concepts and principles that underlie all successful applications of Use Case 3.0. The Use-
Case 3.0 Foundation extends the Use-Case Foundation to add the key Use-Case 3.0 concepts of the Use-Case
Slice and to elaborate on the states of the Use Case Alpha whilst adding an additional principle ‘build the
system in slices’.

It also binds the foundation to the Essence Kernel making it executable and adds the concept of Work Item
to enable the composition of all the Use-Case 3.0 Practices with other popular practices such as Use Stories,

Scrum, Kanban, integration with larger agile frameworks such as SAFe, Scrum@Scale, Nexus and also
integration with more traditional task-based planning approaches.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 46

FIGURE 27: AN OVERVIEW OF THE USE-CASE 3.0 FOUNDATION

Use-Case Storytelling
Apply simple Use-Case Narratives to capture the most valuable aspects of your system and incrementally
deliver a system that helps the users to achieve their real goals.

You can use this practice stand-alone when:

● You want to understand one or more critical aspects of your system.

● You need to create some valuable short-term goals for your team.

● You’d like to use use cases to add some structure and context to your User Story backlog.

Or in conjunction with the Light Use-Case Modeling practice:

● To flesh out your use cases

TEST
THE SYSTEM
(as a whole)

IMPLEMENT SOFTWARE

UNDERSTAND
STAKEHOLDER

NEEDS

DEPLOY
THE SYSTEM

USE THE SYSTEM

Underlying Principles

1. Universally Applicable

2. Start with the big picture
3. Focus on value
4. Involve your stakeholders
5. Tell the whole story
6. Trigger conversations

7. Prioritize readability
8. Just enough, just in time
9. Implement in stages
10. Build the system in slices

UNDERSTAND THE
REQUIREMENTS

SHAPE THE SYSTEN

COORDINATE ACTIVITY

USE CASE

GOAL
ESTABLISHED

FLOW STRUCTURE
UNDERSTOOD

BASIC FLOW
ENABLED

SUFFICIENT FLOWS
FULFILLED

ALL FLOWS
FULFILLED

DRIVES

USE-CASE SLICE

IDENTIFIED

DEFINED

PREPARED

IMPLEMENTED

VERIFIED

Foundational Concepts

1. System of Interest

2. Actor
3. Goals
4. Flow of Events
5. Use Case
6. Basic Flow

7. Alternate Flow
8. Primary Actor
9. Supporting Actors
10. Use-Case Slice
11. Use-Case Model

12. Work Item

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 47

FIGURE 28: AN OVERIEW OF THE USE-CASE STORYTELLING PRACTICE

Note: This practice does not include any use-case modeling. The team suggests a use case to focus on as part
of the Discuss and Slice a Use Case activity.

This practice adds an additional concept that can be used to capture and document your Use-Cases:
Constraints.
Once a development team has the agreed the flow of events with stakeholders, they can easily identify one
or more user stories to implement the basic flow, identify additional user stories to implement each alternate
flow and to handle exceptions. The development team can then discuss with stakeholders how to group those
user stories together into coherent use-case slices - and so identify and define exactly what value should be
tested and delivered by each release or by each increment.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 48

Light Use-Case Modeling
Create a simple, visual model that identifies and focuses on the most valuable aspects of your system and
succinctly communicates this value to all your stakeholders.

You can use this practice stand-alone when:

● You’d like to create a simple overview of the value your system provides.

● You’d like to have more context for your User Stories and Story Maps

Or in conjunction with the Use-Case Storytelling practice:

● To create use-case narratives and test cases that support your development and testing activities.

FIGURE 29: AN OVERVIEW OF LIGHT USE-CASE MODELING

This practice adds additional concepts that can be used to capture and document your Use-Case Model:
Supporting Use Cases and Use-Case Diagrams.

A system boundary is established implicitly by using this lightweight practice, but the model may not yet
capture a complete description of all actors and all use cases.

The light use-case modeling practice does not require the authoring of any formal use-case narratives; each
use case can be used to provide more context for the identification of your User Stories or Features. A
development team can brainstorm with their stakeholders what sequence of steps are required to fulfill the
use case goal, as well as any failure conditions or alternate ways to achieve the same goal. These steps can
then be used to identify a series of candidate user stories. The development team can then discuss with
stakeholders how to group those user stories together into coherent use-case slices - and so identify and
define exactly what value should be tested and delivered by each release or by each increment.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 49

Use-Case Essentials
A combination of Use-Case Storytelling and Light Use-Case Modeling to create a lightweight Use-Case
Essentials Practice.

Use this combination of practices when you want to place use-cases at the heart of your development
processes.

FIGURE 30: AN OVERVIEW OF THE USE-CASE DRIVEN ESSENTIALS PRACTICE

This is the most common starting point for people new to use cases as it combines the power of light use-case
modeling to find your use cases with the efficiency of use-case storytelling to bring the use cases to life.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 50

Use-Case Authoring
Evolve your Use-Case Narratives to provide a formal, detailed specification of the most critical aspects of
your system.

This practice extends the Use-Case Storytelling practice to support the use of use cases when working with
more complex business domains and safety critical systems, or when you need to support formal contracting
mechanisms.

Use this practice when:

1. A complete, verifiable requirements specification is required for contractual or other reasons.
2. When, for whatever reason, the subject matter experts and the developers will not be able to

have frequent, regular discussions with the developers about the use cases and their flows.
3. When an area of a system is complex and / or safety critical and needs a more rigorous up-front

specification before development and testing can commence.

This practice can, of course, be used to add detail to your use-cases when starting with the Light Use-Case
Essentials practice.

FIGURE 31: AN OVERVIEW OF THE USE-CASE AUTHORING PRACTICE

This practice adds additional concepts that can be used to add precision and accuracy to your Use-Case
Narratives: Supporting Information, System-Wide Requirements, Pre-Conditions, Post-Conditions, and
Extension Points

Once again, this practice does not require the creation and or maintenance of a Use-Case Model but,
particularly where contracts are involved, it is usually combined with some form of Use-Case Modeling (light
or structured) to provide a more complete specification of a system’s requirements.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 51

Structured Use-Case Modeling
Evolve your Use-Case Model to fully define the scope of your intended system and reflect its evolution over
time.

This practice extends the Light Use-Case Modeling practice.

Use this practice when:

● You want to capture the full system boundary (i.e. all use cases and all actors are captured).

● You want to be able to better visualize the contents of your releases.

● You want to use your use-case model as the heart of the system’s permanent record.

● You want to define different configurations and pricing options.

This practice can, of course, be used to add more rigor and completeness to your Use-Case Model when
starting with the lightweight Use-Case Essentials practice.

FIGURE 32: AN OVERVIEW OF THE STRUCTURED USE-CASE MODELING PRACTICE

This practice adds additional concepts that can be used to add flexibility, precision, and accuracy to your
Use-Case Model: System Boundary, Include, Extend, Actor Generalization and Use-Case Generalization.
Extend may be used to describe different behaviors of the system – for example to represent different options
offered to customers, the scope of different releases, or different versions of the same system offered to
customers at different price points. Extend may also be used to represent complex error handling or exception
handling – where you do not wish for that behavior to obscure the understandability of the use case model.
These additional concepts are extremely valuable, but they should only be used when they will help
stakeholders understand the big picture, and where they improve understanding and communication.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 52

Use-Case Realization
Analyze the impact that a use case and / or use-case slice has on the design and implementation of your
system using the Unified Modeling Language (UML).

Use this practice when:

● You want to understand the subsystems and components impacted by a use case or use-case slice.

● You want to understand the architectural impact of a use case.

● You want to develop the different components of the system in parallel.

The practice can be used in conjunction with the Use-Case Storytelling Practice, the Light Use-Case Modeling
Practice and any form of use-case driven development. Add this practice to analyze a use-case slice to produce
a use-case realization work item.

FIGURE 33: AN OVERVIEW OF THE USE-CASE REALIZATION PRACTICE

This practice adds additional concepts to help you realize your use cases: Use-Case Realization, Class Diagram,
Sequence Diagram, Collaboration Diagram and Boundary, Control and Entity classes.

Note: There are many different approaches to realizing your use cases that you can use in conjunction with
this practice such as UI Mockups, Wire Frames, textual scenarios and many, many more. So start with this
practice and experiment with your preferred analysis and design techniques to get the maximum benefit from
your use cases.

TEST

THE SYSTEM

(as a whole)

IMPLEMENT SOFTWARE

UNDERSTAND

STAKEHOLDER

NEEDS

DEPLOY

THE SYSTEM

USE THE SYSTEM

UNDERSTAND THE

REQUIREMENTS

COORDINATE ACTIVITY

IMPLEMENTATION
ELEMENTS IDENTIFIED

RESPONSIBILITIES
ALLOCATED

INTERACTION
DEFINED

USE-CASE
REALIZATION

USE CASE

GOAL
ESTABLISHED

FLOW STRUCTURE
UNDERSTOOD

BASIC FLOW
ENABLED

SUFFICIENT FLOWS
FULFILLED

ALL FLOWS
FULFILLED

SKETCH:

BARE ESSENTIALS:

ENHANCED:

EXPANDED:

FURTHER EXPANDED:

DOCUMENTED BY

DRIVES

USE-CASE SLICE

IDENTIFIED

DEFINED

ANALYZED

PREPARED

IMPLEMENTED

VERIFIED

ANALYZE A

USE-CASE SLICE

to Understands
the Requirements

and Shape the
System

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 53

Using Use-Case 3.0
Use-Case 3.0 can be used in many different contexts to help produce many different kinds of system. In this
chapter we look at using use cases for different kinds of system, different kinds of requirements and different
development lifecycles.

It can also be used to complement and improve the results that team’s get from using complementary product
development, requirements, and work management practices such as User Stories, Features, and Task-based
planning.

Use-Case 3.0: Applicable for all types of system
Many people think that use cases are only applicable to user-intensive systems where there is a lot of
interaction between the human users and the system. This is strange because the original idea for use cases
came from telecom switching systems, which have both human users (subscribers, operators) and machine
users, in the form of other interconnected systems. Use cases are of course applicable for all systems that
are used – and that means of course all systems.

Use-Case 3.0: It’s not just for user-intensive applications
Use cases are just as useful for embedded systems with little or no human interaction as they are for user
intensive ones. Nowadays, people are using use cases in the development of all kinds of embedded software
in domains as diverse as the motor, consumer electronics, military, aerospace, and medical industries. Even
real-time process control systems used for chemical plants can be described by use cases where each use case
focuses on a specific part of the plant’s process behavior and automation needs.

All that is needed for use cases to be appropriate is for the system to collaborate with the outside world,
regardless of whether the users are humans or other systems. Their applicability is far broader than most
people think.

Use-Case 3.0: It’s not just for software development
The application of use cases is not limited to software development. They can also help you to understand
your business requirements, analyze your existing business, design new and better business processes, and
exploit the power of IT to transform your business. By using use cases recursively to 1) model the business
and its interactions with the outside world and 2) model the systems needed to support and improve the
business you can seamlessly identify where the systems will impact on the business and which systems you
need to support the business.

The use cases used to model the business are often referred to as business use cases. They provide the context
for your IT systems development work, allowing the business development and the IT development to be
carried out in perfect synchronization. Not only can you develop the IT systems slice-by-slice, but you can
also develop your business model slice-by-slice. This is very powerful as it allows you to evolve your business
and its supporting systems in tandem with one another, enabling incremental business development as well
as incremental systems development.

In the modern world the business and the IT systems that support it can, and should, be developed in synch
(one won’t work without the other). The use of use cases and use-case slices at both the business and IT
boundaries can close the gap between the business and the IT enabling them to work as truly collaborative
partners.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 54

Use-Case 3.0: handling all types of requirement
Although they are one of the most popular techniques for describing a systems’ functionality, use cases are
also used to explore their non-functional characteristics. The simplest way of doing this is to capture them as
part of the use cases themselves. For example, relate performance requirements to the time taken between
specific steps of a use case or list the expected service levels for a use case as part of the use case itself.

Some non-functional characteristics are more subtle than this and apply to many, if not all, of the use cases.
This is particularly true when building layered architectures including infrastructure components such as
security, transaction management, messaging services, and data management. The requirements in these
areas can still be expressed as use cases – separate use cases focused on the technical usage of the system.
We call these additional use cases infrastructure use cases as the requirements they contain will drive the
creation of the infrastructure that the application will run on. These use cases and their slices can be
considered as cross-cutting concerns that will affect the behavior of the system when the more traditional
functional use cases are performed. For example, a use case could be created to explore how the system will
manage database transactions including all the different usage scenarios such as the schemes for data locking,
data caching, commit and roll-back. This use case would apply every time another use case retrieves or stores
data in the system.

Combining these infrastructure use cases with other techniques such as separation of concerns and aspect-
oriented programming allows these common requirements to be addressed without having to change the
implementation of the existing functional use cases.

Use-Case 3.0: Applicable for all development lifecycles
Use-Case 3.0 works with all popular software development lifecycles including:

● Iterative, backlog-driven approaches such as Scrum, EssUP and openUP and their scaled
equivalents such as SAFe, Scrum@Scale, LeSS and Nexus.

● One-piece flow-based lifecycles such as Kanban

● All-in-one go lifecycles such as Waterfall

In the following 3 short sections we will illustrate how Use-Case 3.0 and, in particular, use-case slices can
help with each of these. These sections are not as self-contained as the rest of the document and rely upon
the reader having a basic understanding of the approach being discussed. We recommend that you only read
the sections for the approaches you are familiar with.

Use-Case 3.0 and backlog-driven iterations
Before adopting any backlog-driven approach you must understand what items will go in the backlog. There
are various forms of backlog that teams use to drive their work including product backlogs, release backlogs,
team backlogs and project backlogs. Regardless of the terminology used they all follow the same principles.
The backlog itself is an ordered list of everything that might be needed and is the single source of
requirements for any changes to be made. The basic concept of a backlog is illustrated by FIGURE 34.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 55

FIGURE 34: A BASIC BACKLOG

When you use Use-Case 3.0 the use-case slices can be used as the team’s the primary backlog item type. The
use of use-case slices ensures that your backlog items are well-formed, as they are naturally independent,
valuable, and testable. The structuring of the use-case narrative that defines them makes sure that they are
estimable and negotiable, and the use-case slicing mechanism enables you to slice them as small as you need
to support your development team.

The use cases are not put into the ordered list themselves as it is not clear what this would mean. Does it
mean that this is where the first slice from the use case would appear or where the last slice from the use
case would appear? If you want to place a use case into the list before slicing just create a dummy slice to
represent the whole use case and insert it into the list.

When you adopt a backlog-driven approach it is important to realize that the backlog is not built and
completed up-front but is continually worked on and refined, something that is often referred to as refining
or maintaining the backlog. The typical sequence of activities for a backlog-driven, iterative approach is
shown in FIGURE 35.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 56

FIGURE 35: USE-CASE 3.0 ACTIVITIES FOR ITERATIVE DEVELOPMENT APPROACHES

Before the development starts the initial backlog is prepared. ‘Find Actors and Use Cases’ is used to build the
initial use-case model and scope the system, ‘Discuss and Slice a Use Case’ is used to create the initial set of
most important use-case slices to seed the backlog, and ‘Analyze a Use-Case Slice’ is used to assess the impact
of the selected use-case slices.

Once the backlog is up and running you can start the first development iteration. Every iteration starts with
some planning. During this planning you need to ‘Discuss and Slice the Use Cases’ to further slice the selected
use-case slices to make sure they are small enough to complete in the iteration and ‘Prepare a Use-Case Slice’
to create the work items to be populate the iteration’s plan. The development team then uses ‘Analyze a
Use-Case Slice’, ‘Implement Software (for a slice)’, and ‘Test the System (for a slice) to develop the identified
slices and add them to the system.

While the development is on-going the team also uses ‘Inspect and Adapt the Use Cases’, ‘Discuss and Slice a
Use Case’ and ‘Prepare a Use-Case Slice’ to maintain the backlog, handle change and make sure there are
enough backlog items ready to drive the next iteration. The team may even need to use ‘Find Actors and Use
Cases’ to handle major changes or discover more use cases for the team. In Scrum it is recommended that
teams spend 5 to 10 per cent of their time maintaining their backlog. This is not an inconsiderable overhead
for the team, and Use-Case 3.0 provides the work products and activities needed to do this easily and
efficiently.

Finally at the end of the iteration the team needs to demonstrate the system and reflect on their performance
during the iteration. The team should use ‘Test the System (as a whole)’ to understand where they are, and
‘Inspect and Adapt Use Cases’ to reflect on the quality and effectiveness of their use cases and use-case
slices.

Complementing a Story Backlog with Use-Cases and Use-Case Slices

As discussed throughout this document, primarily in The Use-Case Foundation and Prepare a Use-Case Slice
Sections, use-case slices generally involve many steps and changes to many different parts of the system and
need to be split into a series of smaller work items for insertion into a team’s plans or story backlog.

This relationship between the slice representing an end-to-end slice of value and the one or more work items
needed to implement the slice makes Use-Case 3.0 100% compatible with teams that are already using User
Stories.

DEVELOP AND TEST THE SLICES

FIND ACTORS
AND USE CASES

DISCUSS AND SLICE
A USE CASE

INSPECT AND ADAPT
THE USE CASES

ANALYZE A
USE-CASE SLICE

PREPARE A
USE-CASE SLICE

IMPLEMENT SOFTWARE
(FOR A SLICE)

TEST THE SYSTEM
(FOR A SLICE)

PREPARE THE BACKLOG

DISCUSS AND SLICE
A USE CASE

ANALYZE A
USE-CASE SLICE

PREPARE A
USE-CASE SLICE

FIND ACTORS
AND USE CASES

INSPECT AND ADAPT
THE USE CASES

TEST THE SYSTEM
(AS A WHOLE)

PLAN
THE

TIME BOX MAINTAIN THE BACKLOG

DEMONSTRATE
AND

REFLECT

BEFORE DEVELOPMENT EVERY DEVELOPMENT ITERATION

DISCUSS AND SLICE
A USE CASE

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 57

For example:

● For teams using Scrum with a User Story Backlog the Use Cases and Use-Case Slices will help
them find the right User Stories to populate their backlogs and focus on delivering true user
value. They will also help them form more effective Product and Sprint Goals.

● For teams using Epics (big stories) to complement their User Stories (the smaller stories that
they take into their Sprints or Iterations) then the slices work perfectly as Epics.

Use-Case 3.0 and one-piece flow
One-piece flow is an approach that avoids the batching of the requirements seen in the iterative and waterfall
approaches. In a one-piece flow approach each requirements item flows through the development process. One-piece
flow is a technique taken from lean manufacturing. FIGURE 36: BASIC ONE-PIECE FLOW shows a small team
engaging in one-piece flow passing each item directly from workstation A to B to C.

People icons © ioannis kounadeas / Fotolia

FIGURE 36: BASIC ONE-PIECE FLOW

For this to work effectively you need small, regularly sized items that will flow quickly through the system.
For software development the requirements are the raw materials and working software is the finished goods. Use
cases would be too irregularly sized and too big to flow through the system. The time at stations A, B and C
would be too unpredictable and things would start to get stuck. Use-case slices though can be sized
appropriately and tuned to meet the needs of the team. FIGURE 37 illustrates one-piece flow for software
development with use-case slices.

People icons © ioannis kounadeas / Fotolia

FIGURE 37: ONE-PIECE FLOW FOR SOFTWARE DEVELOPMENT WITH USE-CASE SLICES

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 58

As well as flowing quickly through the system, there needs to be enough items in the system to keep the team
busy. one-piece flow doesn’t mean that there is only one requirements item being worked on at a time or
that there is only one piece of work between one workstation and the next. Work in progress limits are used
to level the flow and prevent any wasteful backlogs from building up.

One-piece flow doesn’t mean that individuals only do one thing and only work at one workstation. For example
there could be more people working in Development than there are in Test, and if things start to get stuck
then the people should move around to do whatever they can to get things moving again. If there are no use-
case slices waiting to be tested but there are slices stuck in preparation, then the testers can show some
initiative and help to do the preparation work. In the same way you are not limited to one person at each
workstation, or even only one instance of each workstation.

Kanban boards are a technique for visualizing the flow through a production line. A Kanban is a sign, flag, or
signal within the production process to trigger the production and supply of product as part of just-in-time
and lean manufacturing. On a Kanban board Kanban cards are used to represent the items in the system.
Figure 37 shows a simple Kanban board for a development team which first analyses each slice to understand
its impact, then develops and unit tests the software, and finally independently tests the resulting software
before putting it live.

FIGURE 38: USE-CASE SLICES ON A KANBAN BOARD

The work in progress limits are shown in red. Reading from left to right you can see that slices have to be
identified and scoped before they are input to the team. Here there is a work in progress limit of 5, and the
customers, product owner or business requirements team that are the source of the requirements try to keep
5 use-case slices ready for implementation at all times.

Slices are pulled from the input queue into the preparation area where impact analysis is undertaken, slices
are clarified, and the test cases finalized. Here there is a work in progress limit of 3 items. Items in the on-
going column are currently being worked on. The items in the done column have had their preparation
completed and are waiting to be picked up by a developer. In this way the slices work their way through the
development team and after successfully passing the independent system testing go live. A work in progress
limit covers all the work at the station, including both the on-going and done items. There is no work in
progress limit on the output or the number of items that can go live.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 59

An important thing to note about Kanban is that there is no definitive Kanban board or set of work in progress
limits; the structure of the board is dependent on your team structure and working practices. You should tune
the board and the work in progress limits as you tune your practices. The states for the use-case slices are a
great aid to this kind of work design. FIGURE 39 shows the alignment between the states and the Kanban
board shown in FIGURE 38. The states are very powerful as they clearly define what state the slice should be
in when it is to be handed on to the next part of the chain.

FIGURE 39: ALIGNING THE STATES OF THE USE-CASE SLICE TO THE KANBAN

FIGURE 40 shows where the different Use-Case 3.0 activities are applied. The interesting thing here is that
“Inspect and Adapt Use Cases” is not the responsibility of any particular workstation but is conducted as part
of the regular quality control done by the team. This activity will help the team to tune the number and type
of workstations they have as well as their work in progress limits.

FIGURE 40: USE-CASE 3.0 ACTIVITIES FOR ONE-PIECE FLOW

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 60

For example, as a result of reviewing the team’s effectiveness you might decide to eliminate the preparation
workstation and increase the work in progress limits for development and system test. Again, you exploit the
states of the use-case slice to define what it means for each workstation to have finished their work resulting
in the Kanban board shown in FIGURE 41.

FIGURE 41: THE TEAM'S REVISED KANBAN BOARD SHOWING COMPLETION STATES

Use-Case 3.0 and waterfall
For various reasons you may find that you need to develop your software within the constraints of some form
of waterfall governance model. This typically means that some attempt will be made to capture all the
requirements up-front before they are handed over to a third-party for development.

When you adopt a waterfall approach the use cases are not continually worked on and refined to allow the
final system to emerge but are all defined in one go at the start of the work. They then proceed in perfect
synchronization through the other development phases, all of which focus on one type of activity at a time.
The typical sequence of activities for a waterfall approach is shown in FIGURE 42.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 61

FIGURE 42: USE CASE 3.0 ACTIVITIES FOR WATERFALL APPROACHES

Even within the strictest waterfall environment there are still changes happening during the development of
the software itself. Rather than embrace and encourage change, waterfall projects try to control change.
They will occasionally ‘Inspect and Adapt the Use Cases’ when there is a change request that cannot be
deferred, and they will prepare additional use-case slices to handle any changes that are accepted. They are
unlikely to find any further use cases after the requirements phase as this would be considered too large a
change in scope.

The ‘one activity at a time’ nature of the waterfall approach means that the make-up of the team is
continually changing over time, and so the ability to use to face-to-face communication to share the stories
is very limited. To cope with this you need to turn up the level of detail on the work products, going way
beyond the bare essentials. FIGURE 43 shows the level of detail typically used on waterfall projects.

TEST
EVERYTHING

IMPLEMENT
ALL THE SLICES

FIND ACTORS
AND USE CASES

DISCUSS AND SLICE
A USE CASE

INSPECT AND ADAPT
THE USE CASES

ANALYZE A
USE-CASE SLICE

IMPLEMENT
SOFTWARE

(FOR A SLICE)

TEST THE SYSTEM
(FOR A SLICE)

FIND, PREPARE & SLICE
THE USE CASES

DISCUSS AND SLICE
A USE CASE

PREPARE A
USE-CASE SLICE

TEST THE SYSTEM
(AS A WHOLE)

CONTROL CHANGE

REQUIREMENTS
PHASE

PREPARE A
USE-CASE SLICE

ANALYZE ALL
THE USE CASES

SHAPE THE
SYSTEM

ANALYZE A
USE-CASE SLICE

DESIGN THE
ENTIRE SYSTEM

SHAPE THE
SYSTEM

ANALYSIS
PHASE

DESIGN
PHASE

DEVELOPMENT
PHASE

TEST
PHASE

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 62

FIGURE 43: LEVELS OF DETAIL FOR THE WORK PRODUCTS WHEN USING A WATERFALL APPROACH

Within each of the development phases one or more of the work products are progressed to a very high-level
of detail to ensure that they are 1) complete and 2) answer any and all questions that might arise during the
later phases. In the requirements phase the use-case model is worked and re-worked to make sure that all
the use cases have been discovered, all the use-case narratives are fully described and the supporting
information is comprehensively defined. At this stage some thought will be put into testing and the test ideas
formulated. The test cases are then put to one side until the test phase is reached.

The use cases and their supporting information are handed over to the analysis and design team who will flesh
out the use-case realizations first to assign responsibilities to the system elements and then to define all the
interactions. Eventually coding will start and all the use cases and use-case slices will be implemented.
Finally, the testers will get involved and all the test cases will be defined in detail and testing will commence.

The sequential nature of this way-of-working may lead you to think that there is no role for use-case slices to
play, and that just handling the entire use cases would be enough. This is not true as the finer grained control
provided by the use-case slices allows the requirements team to be much more specific about the actual
scope of the system to be built. Even in waterfall projects it is unlikely that you will need all the slices from
all of the use cases. They will also help you to handle any last-minute changes in scope caused by schedule
or quality problems.

Use-Case 3.0 – It’s not just for one type of team
Another important aspect of Use-Case 3.0 is its ability to adapt to existing team structures and job functions
whilst encouraging teams to eliminate waste and increase efficiency. To this end Use-Case 3.0 does not pre-
define any particular roles or team structures, but it does define a set of states for each of the central
elements (the use case and the use-case slice).

As illustrated by the discussion on Use-Case 3.0 and one-piece flow, the states indicate when the items are
at rest and could be handed-over from one person or team to another. This allows the practice to be used
with teams of all shapes and sizes from small cross-functional teams with little or no handovers to large
networks of specialist teams where each state change is the responsibility of a different specialist. Tracking
the states and handovers of these elements allows the flow of work through the team (or teams) to be
monitored, and teams to adapt their way-of-work to continuously improve their performance.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 63

Use-Case 3.0: Scaling to meet your needs – scaling in,
scaling out and scaling up
No one, predefined approach fits everyone, so we need to be able to scale our use of Use-Case 3.0 in several
different dimensions:

1. Use cases scale in to provide more guidance to less experienced practitioners (developers,
analysts, testers, etc.) or to practitioners who want or need more guidance.

2. They scale out to cover the entire lifecycle, covering not only analysis, design, coding and test
but also operational usage and maintenance.

3. They scale up to support large and very large systems such as systems of systems: enterprise
systems, product lines, and layered systems. Such systems are complex and are typically
developed by many teams working in parallel, at different sites, possibly for different
companies, and reusing many legacy systems or packaged solutions.

Regardless of the complexity of the system you are developing you always start in the same way by identifying
the most important use cases and creating a big picture summarizing what needs to be built. You can then
adapt Use-Case 3.0 to meet the emerging needs of the team. In fact, Use-Case 3.0 insists that you continuously
inspect and adapt its usage to eliminate waste, increase throughput and keep pace with the ever-changing
demands of the team.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 64

Conclusion
Use-Case 3.0 exists as a set of proven and well-defined practices that are compatible with many other
software development practices such as Continuous Integration, Intentional Architecture, and Test-Driven
Development. It also works with all popular management practices. In particular, it has the lightness and
flexibility to support teams that work in an agile fashion. It also has the completeness and rigor required to
support teams that are required to work in a more formal or waterfall environment.

Use-Case 3.0 is:

● lightweight – in both its definition and application.

● scalable – and suitable for teams and systems of all sizes.

● versatile – and suitable for all types of systems and development approaches

● easy to use – use-case models can be quickly put in place and the slices created to meet the
teams’ needs.

Use-Case 3.0 is 100% compatible with teams that are already using user stories.

Use-Case 3.0 is free and offered to the public in this guide and as a set of supporting Essence Practices
available from www.ivarjacobson. com. This is offered as a stand-alone set of cards or as part of the Essence
Workbench environment.

This is the first of many publications on Use-Case 3.0, you can expect to see many other articles, white papers
and blogs on the subject published on www.ivarjacobson.com

http://www.ivarjacobson.com/

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 65

Appendix 1: Work Products
This appendix provides definitions and further information of the work products used by Use-Case 3.0. The
work products covered are:

● Supporting Information

● Test Case

● Use-Case Model

● Use-Case Narrative

● Use-Case Realization

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 66

Supporting Information
The purpose of the supporting information is to capture important terms used to describe the system, and
any and all requirements that don’t fit inside the use-case model.

The supporting information:

● Helps ensure a common understanding of the specified solution.

● Focuses on concepts and terms that need to be understood by everyone involved in the work, and
in particular those terms referenced by the use cases.

● Captures those important global requirements and quality attributes that don’t relate to any
single use case such as supported platforms and system availability.

● Details any standards that need to be followed. For example, coding, presentation, language,
safety, and any other industry standards that apply to the system.

● Helps to identify additional work items not readily identifiable directly from the use-cases, such
as those that will be used to demonstrate the different platforms supported or the desired levels
of availability.

The role of the supporting information is to support the evolution of the use cases and the implementation of
the use-case slices. Capture it to complement your use-case model and avoid miscommunication between the
team members. The information can come from many sources, such as other requirements documents,
specifications, and discussions with stakeholders and domain experts. You can also include domain, process,
and other business models if they are a useful aid to understanding the use-case model and the system it
describes.

The supporting information can be documented at varying levels of detail ranging from a simple set of basic
definitions through to a comprehensive and fully described set of definitions, standards, and quality
attributes. The supporting information can be presented at the following levels of detail:

Notes Taken: A basic level of detail that indicates what is included is just an outline of the most obvious

terms and areas to be addressed.

More detail will need to be added if the information is to support the successful identification and
preparation of the right use-case slices.

Simply Defined: All terms referenced by the use-case narratives must be defined and the system’s global quality

attributes clearly specified. At this level of detail these are captured as simple lists of declarative
statements such as those used in the glossary that accompanies this e-book.

This is the lightest level of detail which provides support for the development of the use-case slices.
It also clarifies the global requirements of the system, enabling the team to tell if the system
implementing the slices is truly usable and not just demonstrable. It is suitable for most teams,
particularly those that collaborate closely with their users and are able to fill in any missing detail by
talking with them.

Modeled and Illustrated: More detail can be added to the supporting information by transforming the basic

definitions into models that precisely capture the definitions, their attributes and their relationships,
and providing real world examples to clarify things. At this level of detail, we go beyond simple definitions
and start to use complementary techniques such as business rule catalogues, information modeling and
domain modeling. It is particularly useful for supporting those use-case models where a
misunderstanding of the requirements could have severe safety, financial or legal consequences.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 67

Comprehensively Defined: Sometimes it is necessary to clarify the information by providing more detailed

explanations and support materials such as comprehensive examples, derivations and cross- references.

At this level of detail, the supporting information becomes more complicated, with more precision,
cross-referencing and use of formal specification techniques.

The supporting information provides a central location to look for terms and abbreviations that may be new
to the team and to find the global quality attributes that everyone in the team should understand. It is a
valuable complement to the use-case model itself. Without the supporting information it can be difficult to
understand what it means for the system to be usable and ready for use.

The supporting information is usually represented as a simple list of terms and their definitions. The list is often split
up into sections such as definitions of terms, business rules, operational constraints, design constraints,
standards, and system-wide requirements. The list may be published as part of a Wiki site to simplify access
and maintenance.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 68

Test Case
The purpose of a test case is to provide a clear definition of what it means to complete a slice of the
requirements. A test case defines a set of test inputs and expected results for the purpose of evaluating
whether or not a system works correctly.

Test cases:

● Provide the building blocks for designing and implementing tests.

● Provide a mechanism to complete and verify the requirements.

● Allow tests to be specified before implementation starts.

● Provide a way to assess system quality.

Test cases are an important, but often neglected, part of a use case. The test cases provide the true definition
of what it is that the system is supposed to do to support a use case. The test cases are particularly important
when we start to slice up the use cases as they provide the developers with a clear definition of what it means
to successfully implement a use-case slice.

Test cases can be used with many forms of requirements practice including use cases, user stories and
declarative requirements. In all cases the tester must be presented with a slice of requirements to test, one
with a clear beginning and end from which they can derive an executable test scenario.

Test cases can be presented at the following levels of details:

Test Ideas Formulated: The lightest level of detail just captures the initial idea that will inform the test

case. When defining a test case, it needs to be clear what the idea behind the test case is and what it is
that it is verifying.

More detail will need to be added if the test case is to be executable.

Scenario Chosen: To be able to run a test case a tester must be presented with a test scenario to execute. The

structure of the use-case narrative ensures that every use-case slice will present the tester with one
or more candidate test scenarios. The art of creating effective test cases is to choose the right subset
of the potential test scenarios to fulfill the test idea and clearly define done for the slice.

This is the lightest level of detail that provides an executable test case. Once the scenario has been chosen
the test case is defined enough to support exploratory and investigative testing. This can be very useful
early in the project lifecycle when the insight provided by testing the system is invaluable, but the
specification (and solution) may not be stable enough to support formal, scripted testing.

Variables Identified: A test case takes some inputs, manipulates system states, and produces some results.

These variables appear as inputs, internal states, and outputs in the requirements. At this level of
detail, the acceptable ranges for the key variables involved in the scenario are explicitly identified.

This level of detail is suitable for those test cases where soliciting the opinion of the tester is an
essential part of the test, for example when undertaking usability testing. It can also be used when more
structure is needed for exploratory and investigative testing.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 69

Variables Set: The test case can be further elaborated by explicitly providing specific values for all the

variables involved in the test case.

This level of detail is suitable for manual test cases, as all the information needed by an intelligent
tester to repeatedly and consistently execute the test case is in place.

Scripted / Automated: If a test case is to be used many times or to support many different tests then it is

worth making the effort to fully script or automate it.

At this level of detail, the test case can be executed without any intervention or additional decision
making.

The test cases are the most important work product associated with a use case; remember it is the test cases
that define what it means to complete the development of a use case, not the use-case narrative. In a way
the test cases are the best form of requirements you can have.

The test cases will be used throughout the lifetime of the system – they are not just used during the
implementation of the use cases but are also used as the basis for regression testing and other quality checks.
The good news is that the structure of the use cases and use-case narratives naturally leads to well-formed,
robust, and resilient test cases; ones that will last as long as the system continues to support the use cases.

The use-case narratives are collections of flows that the system must support, and for each flow described in
the use-case narrative there will have to be at least one test case. You create the test cases at the same time
as the use-case narratives as part of preparing a use-case slice for development.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 70

Use-Case Model
A use-case model is a model of all of the useful ways to use a system, and the value that they will provide.
The purpose of a use-case model is to capture all the useful ways to use a system in an accessible format that
captures a system’s requirements and can be used to drive its development and testing.

A use-case model:

● Allows teams to agree on the required functionality and characteristics of a system.

● Clearly establishes the boundary and scope of the system by providing a complete picture of its
actors (being outside the system) and use cases (being inside the system).

● Enables agile requirements management.

A use-case model is primarily made up of a set of actors and use cases, and diagrams illustrating their
relationships. Use-case models can be captured in many different ways including as part of a Wiki, on a white
board or flipchart, as a set of PowerPoint slides, in a MS Word document, or in a modeling tool.

The use-case model can be prepared at different levels of detail:

Value Established: The first step towards a complete use-case model is to identify the most important

actors and use cases – the primary ones. These are the ones that provide the value of the system.

This is the lightest level of detail. It is suitable for most projects, particularly those adding new
functionality to existing systems where there is little or no value in modeling all the things the system
already does.

System Boundary Established: The primary actors and use cases capture the essence of why the system is

built. They show how the users will get value from the system. They may not provide enough value to set
it up and keep it running. In these cases, supporting actors and operational use cases are necessary to enable and
support the effective operation of the system.

This level of detail is useful when modeling brand new systems or new generations of existing systems.
At this level of detail all the systems actors and use cases are identified and modeled.

Structured: The use-case model often contains redundant information, such as common sequences or

patterns of interaction. Structuring the use-case model is the way to deal with these redundancies.

For large and complex systems, especially those that are used to provide similar functionality within many
different contexts, structuring the use-case model can aid understanding, eliminate waste, and help
you find reusable elements.

As long as your use-case model clearly shows the value that the stakeholders will receive from your new or
updated system then it is doing its job. Care should be taken when adding detail to the model. Only advance
to System Boundary Established or Structured if these levels of detail are clearly going to add value and help
you deliver the new system more efficiently.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 71

Use-Case Narrative
The purpose of a use-case narrative is to tell the story of how the system and its actors work together to
achieve a particular goal.

Use-case narratives:

● Identify the flows used to explore the requirements and identify the use-case slices

● Describe a sequence of actions, including variants that a system and its actors can perform to
achieve a goal.

● Are presented as a set of flows that describe how an actor uses a system to achieve a goal, and
what the system does for the actor to help achieve that goal.

● Capture the requirements information needed to support the other development activities.

Use-case narratives can be captured in many ways including as part of a Wiki, on index cards, as MS Word
documents, or inside one of the many commercially available work management, requirements management or
modeling tools.

Use-case narratives can be developed at different levels of detail ranging from a bulleted outline, identifying
the basic flow and the most important variants, through to a comprehensive, highly detailed specification that
defines all the actions, inputs and outputs involved in performing the use case. Use-Case narratives can be
prepared at the following levels of detail:

Briefly Described: The lightest level of detail that just captures the goal of the use case and which actor

starts it.

This level of detail is suitable for those use cases you decide not to implement. More detail will be
needed if the use case is to be sliced up for implementation.

Bulleted Outline: The use case must be outlined in order to understand its size and complexity. This level of

detail also enables effective scope management as the outline allows the different parts of the use
case to be prioritized against one another and, if necessary, targeted onto different releases.

This is the lightest level of detail that enables the use case to be sliced up and development to progress. It is
suitable for those teams that are in close collaboration with their users and are able to fill in any
missing detail via conversations and the completion of the accompanying test cases.

Essential Outline: Sometimes it is necessary to clarify the responsibilities of the system and its actors

whilst undertaking the use case. A bulleted outline captures their responsibilities but does not clearly
define which parts of the use case are undertaken by the system and which are undertaken by the
actor(s).

At this level of detail, the narrative becomes a description of the dialog between the system and its
actors. It is particularly useful when establishing the architecture of a new system or trying to establish
a new user experience.

Fully Described: Use-case narratives can be used to provide a highly detailed requirements specification by

evolving them to their most comprehensive level of detail, fully described. The extra detail may be
needed to cover for the absence of expertise within the team, a lack of access to the stakeholders or
to effectively communicate complex requirements.

This level of detail is particularly useful for those use cases where a misunderstanding of the contents
could have severe safety, financial or legal consequences. It can also be useful when off-shoring or
out- sourcing software development.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 72

The use-case narrative is a very flexible work product that can be expanded to capture the amount of detail
you need to be successful whatever your circumstances. If you are part of a small team working collaboratively
with the customer on an exploratory project then bulleted outlines will provide a very lightweight way of
discovering the requirements. If you are working in a more rigid environment where there is little access to
the real experts, then essential outlines or fully described narratives can be used to plug the gaps in the
team’s knowledge.

Not every use-case narrative needs to be taken to the same level of detail – it is not uncommon for the most
important and risky use cases to be more detailed than the others. The same goes for the sections of the use-
case narrative – the most important, complex, or risky parts of a use case are often described in more detail
than the others.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 73

Use-Case Realization
The purpose of a use-case realization is to show how the system’s elements, such as components, programs,
stored procedures, configuration files and database tables, collaborate to perform a use case.

Use-case realizations:

● Identify the system elements involved in the use cases.

● Capture the responsibilities of the system elements when performing the use case.

● Describe how the system elements interact to perform the use case.

● Translate the business language used in the use-case narratives into the developer language used
to describe the system’s implementation.

Use-case realizations are incredibly useful and can be used to drive the creation and validation of many of
the different views teams use to design and build their systems. For example, user interface designers use
use-case realizations (in the form of storyboards) to explore the impact of the use cases on the user interface.
Architects use use-case realizations to analyze the architecturally significant use cases and assess whether or
not the architecture is fit for purpose.

Use-case realizations can be presented in many different formats – the format of the realization is completely
dependent on the team’s development practices. Common ways of expressing use-case realizations include
simple tables, storyboards, sequence diagrams, collaboration diagrams, and data-flow diagrams. The
important thing is that the team creates a realization to identify which system elements are involved in the
implementation of the use case and how they will change.

Create a use-case realization for each use case to identify the system elements involved in performing it and,
most importantly, assess how much they will have to be changed. You can think of the use-case realizations
as providing the ‘how’ to complement the use-case narratives ‘what’.

Use-case realizations can be presented at the following levels of detail:

Implementation Elements Identified: The lightest level of detail that just captures the elements of the

system, both new and existing, that will participate in the use case.

This level of detail is suitable for small teams, working in close collaboration and developing simple
systems with a known architecture. You may need to add more detail if your system is complex, or
your team is large or distributed.

Responsibilities Allocated: To allow the team to be able to update the affected system elements in parallel, or

in support of multiple slices, the developers need to understand the responsibilities of the individual
elements. The responsibilities provide a high-level definition of what each element needs to do, store
and track.

This level of detail is suitable for situations where each use-case slice touches on multiple system
elements, or where the slices will be developed by multiple developers working in parallel. It should
also be used when the architecture of the system is immature, and the overall responsibilities of the
system elements have yet to be understood.

Interaction Defined: To provide a complete, unambiguous definition of the changes required to each system

element involved in the use case, the use-case realization must include details of all the interfaces
and interactions involved in performing the use case.

This level of detail is particularly useful for those use cases where the system design is complex or
challenging. It can also be useful when the system elements are to be developed by developers with

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 74

little or no knowledge of the design of the system, no access to experienced designers, and no remit to
re-factor or alter the design. It is also useful when dealing with inexperienced developers who are still
learning their trade.

The use-case realization is a very flexible work product, teams can expand their realization to add more detail
as and when they need it. If a small team is doing all their analysis and design collaboratively then simple, lightweight
use-case realizations will be sufficient. If a large team, that is unable to have lots of collaborative sessions,
is developing a complex system then more detailed realizations will aid communication, and make sure that
all the developers have all the information they need to successfully deliver their system elements and
implement their use-case slices.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 75

Glossary of Terms
Actor: An actor defines a role that a user can play when interacting with the system. A user can either be an
in- dividual or another system. Actors have a name and a brief description, and they are associated to the use
cases with which they interact.
Alternative Flow: Description of variant or optional behavior as part of a use-case narrative. Alternative flows
are defined relative to the use case’s basic flow.
Application: Computer software designed to help the actors in performing specific tasks.
Aspect-Oriented Programming: A programming technique that which aims to increase modularity by allowing
the separation of cross-cutting concerns (see http://en.wikipedia.org/wiki/Aspect-oriented_programming).
Basic Flow: The description of the normal, expected path through the use case. This is the path taken by
most of the users most of the time; it is the most important part of the use-case narrative.
Customer: The stakeholder who is paying for the development of the system or who is expected to purchase
the system once it is complete.
Flow: A description of some full or partial path through a use-case narrative. There is always at least a basic
flow, and there may be alternative flows.
Requirements: What the software system must do to satisfy the stakeholders.
Separation of Concerns: The process of splitting up a system to minimize the overlap in functionality (see
http://en.wikipedia.org/wiki/Separation_of_concerns).
Software System: A system made up of software, hardware, and digital information, and that provides its
primary value by the execution of the software.
A software system can be part of a larger software, hardware, business or social solution.
Stakeholder: A person, group or organization who affects or is affected by the software system.
System: A group of things or parts working together or connected in some way to form a whole. Typically
used to refer to the subject of the use-case model: the product to be built.
System Element: Member of a set of elements that constitutes a system (ISO/IEC 15288:2008)
Test Case: A test case defines a set of test inputs and expected results for the purpose of evaluating whether
or not a system works correctly.
Use case: A use case is all the ways of using a system to achieve a particular goal for a particular user.
Use-Case 3.0: A scalable set of agile practices that uses use-cases to capture a set of requirements and drive
the incremental development of a system to fulfill them.
Use-Case Diagram: A diagram showing a number of actors and use cases, and their relationships.
Use-Case Model: A model of all of the useful ways to use a system, and the value that it will provide. A use-
case model is primarily made up of a set of actors and a set of use cases, and diagrams illustrating their
relationships.
Use-Case Narrative: A description of a use case that tells the story of how the system and its actors work
together to achieve a particular goal. It includes a sequence of actions (including variants) that a system and
its actors can perform to achieve a goal.
Use-Case Slice: A use-case slice is one or more stories selected from a use case to form a work item that is
of clear value to the customer.
User: A stakeholder who interacts with the system to achieve its goals.
User Story: A short, simple description of a feature told from the perspective of the person who desires the
new capability, usually a user or customer of the system.

http://en.wikipedia.org/wiki/Aspect-oriented_programming)
http://en.wikipedia.org/wiki/Separation_of_concerns)

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved. Page 76

Acknowledgements
General
Use-Case 3.0 is based on industry-accepted best practices, used and proven for decades. We would like to
thank the tens of thousands of people who use use cases every day on their projects and in particular those
who share their experiences inside and outside their own organizations. Without all of their hard work and
enthusiasm we wouldn’t have the motivation or knowledge to attempt this evolution of the technique. We
hope you find this e-book useful, and continue to inspect and adapt the way that you apply use cases.

People
We would also like to thank everyone who has directly contributed to the creation of this or previous versions
of this e-book including, in no particular order, Kurt Bittner, Paul MacMahon, Richard Schaff, Eric lopes
Cardozo, Svante Lidman, Craig Lucia, Tony Ludwig, Ron Garton, Burkhard Perkens-Golomb, Arran Hartgroves,
James Gamble, Brian Hooper, Stefan Bylund, and Pan-Wei Ng.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved. Page 77

Bibliography
Object-Oriented Software engineering: A Use Case Driven Approach Ivar Jacobson, Magnus Christerson,
Patrik Jonsson, Gunnar Overgaard The original book that introduced use cases to the world.

● Publisher: Addison-Wesley Professional; revised edition (July 10, 1992)

● ISBN-10: 0201544350 ISBN-13: 978-0201544350

The Object Advantage: Business Process Reengineering With object Technology Ivar Jacobson, Maria
Ericsson, Agneta Jacobson
The definitive guide to using use cases for business process reengineering.

● Publisher: Addison-Wesley Professional (September 30, 1994)

● ISBN-10: 0201422891 ISBN-13: 978-0201422894

Software Reuse: Architecture, Process and organization for Business Success Ivar Jacobson, Martin
Griss, Patrik Jonsson
A comprehensive guide to software reuse, including in-depth guidance on using use cases for the development
of product lines and systems-of-interconnected systems.

● Publisher: Addison-Wesley Professional (June 1, 1997)

● language: English

● ISBN-10: 0201924765 ISBN-13: 978-0201924763

Use-Case Modeling
Kurt Bittner and Ian Spence
The definitive guide to creating use-case models and writing good use cases.

● Publisher: Addison-Wesley Professional; 1 edition (August 30, 2002)

● ISBN-10: 0201709139 ISBN-13: 978-0201709131

Aspect-oriented Software Development with Use Cases Ivar Jacobson and Pan-Wei Ng
The book that introduced the world to use-case slices in their previous guise as use-case modules.

● Publisher: Addison-Wesley Professional; 1 edition (January 9, 2005)

● ISBN-10: 0321268881 ISBN-13: 978-0321268884

Use Cases are Essential Ivar Jacobson and Alistair Cockburn
The co-authored paper that launched a new wave of interest in Use Cases

● acmqueue November 11, 2023. Volume 21, issue 5.

Use Cases Foundation Ivar Jacobson and Alistair Cockburn
A concise paper published in 2024 which defines the common ground that lies between the two most widely
practiced ways of working with use cases.

Unifying User Stories, Use Cases, Story Maps: The power or verbs Alistair Cockburn
Alistair Cockburn’s new guide to what makes use cases, user stories and story maps all work, and what makes
them work well together.

● Publisher: Humans and Technology Press; 1 edition (May, 2024)

● ISBN 978-1-7375197-6-8

https://queue.acm.org/detail.cfm?id=3631182
https://ss-usa.s3.amazonaws.com/c/308454236/media/245965ce1f5b9890898305669066035/Use%20Case%20Foundation.pdf

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved. Page 78

About the Authors

Ivar Jacobson
Dr. Ivar Jacobson is a father of components and component architecture, use cases, aspect-oriented software
development, modern business engineering, the Unified Modeling Language and the Rational Unified Process.
His latest contribution to the software industry is a formal practice concept that promotes practices as the
‘first-class citizens’ of software development and views process simply as a composition of practices. He is
the principal author of six influential and best-selling books. He is a keynote speaker at many large
conferences around the world and has trained several process improvement consultants.

Ian Spence
As Chief Technology officer at Ivar Jacobson International, Ian Spence specialized in the agile application of
the Unified Process. He is a certified RUP practitioner, ScrumMaster, SAFe Fellow and an experience coach
having worked with 100s of projects to introduce iterative and agile techniques. He has over 30 years
experience in the software industry, covering the complete development lifecycle, including requirements
capture, architecture, analysis, design, implementation and project management. His specialty subjects are
iterative project management, agile team working and requirements management with use cases. In his role
as CTO, Ian contributed to the technical direction of Ivar Jacobson International and he continues to work
with the company’s Technology office to define the next generation of smart, active, software development
practices. He was the project lead and process architect for the development of the Essential Unified Process
and the practices it contains. When he is not working on researching, capturing and defining practices he
spends his time assisting companies in the creation and execution of change programs to improve their
software development capability. He is co-author of the Addison Wesley books “Use Case Modeling” and
“Managing Iterative Software Development Projects”.

Keith de Mendonca
Dr Keith de Mendonca is a principal consultant at Ivar Jacobson International. He has worked with a number
of industry luminaries to essentialize software practices using the Essence language. As a Chief Technology
Architect and Chief Site Technologist at Symbian Ltd, he worked with software engineers in the UK, India and
China to develop an operating system for the first wave of smartphones – used by Nokia, Sony Ericsson, Fujitsu
and many other phone manufacturers. He returned to the UK to join Ivar Jacobson International in 2015. Keith
has helped many medium-sized and large enterprises improve productivity and become more innovative by
adopting lean-agile development practices at the team and at the enterprise level.

USE-CASE 3.0 The Definitive Guide - Refreshed
© 2005-2024 Ivar Jacobson International SA. All rights reserved.

Page 79

About Ivar Jacobson International
IJI is a global services company specializing in improving the
performance of software development teams by removing barriers
to the adoption of new practices. Through the provision of high caliber
people, innovative practices, and proven solutions, we ensure
that our customers achieve strong business/IT alignment, high
per- forming teams, and projects that deliver.

www.ivarjacobson.com

Switzerland
+41 (0) 79 330 16 57

United Kingdom
+44 (0) 20 3934 0278

Sweden
+46 (0) 8 515 10 174

http://www.ivarjacobson.com/

